Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Rätsel der rasenden Sterne

01.04.2010
Wie von einem Katapult abgeschossen, rasen einzelne, superschnelle Sterne aus unserer Galaxie heraus.

Für deren Beschleunigung ist ein Schwarzes Loch verantwortlich, das sich in der Mitte unserer Galaxis befindet, so glauben die meisten Experten. Astronomen der Universität Erlangen-Nürnberg um Prof. Dr. Ulrich Heber waren an der Entdeckung der ersten drei solcher Sterne im Jahr 2005 maßgeblich beteiligt und vermuten, dass es auch andere Ursachen für das Phänomen geben muss.


Eine Aufnahme des Weltraumteleskops Hubble zeigt den Bugschock, der durch einen superschnellen Stern erzeugt wird. Foto: NASA

In einer Diplomarbeit wurde ein neu entdeckter superschneller Stern untersucht. Dabei konnte nachgewiesen werden, dass er nicht aus dem Zentrum der Galaxis stammt.

Wie von einem Katapult abgeschossen, rasen einzelne, superschnelle Sterne aus unserer Galaxie heraus. Für deren Beschleunigung ist ein Schwarzes Loch verantwortlich, das sich in der Mitte unserer Galaxis befindet, so glauben die meisten Experten. Astronomen der Universität Erlangen-Nürnberg um Prof. Dr. Ulrich Heber waren an der Entdeckung der ersten drei solcher Sterne im Jahr 2005 maßgeblich beteiligt und vermuten, dass es auch andere Ursachen für das Phänomen geben muss. In einer Diplomarbeit, die in Kooperation mit der Universität Erlangen-Nürnberg entstand, wurde ein neu entdeckter superschneller Stern untersucht. Dabei konnte nachgewiesen werden, dass er nicht aus dem Zentrum der Galaxis stammt. Die Ergebnisse der Arbeit wurden im "The Astrophysical Journal" veröffentlicht, der bedeutendsten Fachzeitschrift im Bereich der Astronomie.

Im Zentrum unserer Galaxie befindet sich ein Schwarzes Loch, ca. drei Millionen Mal schwerer als die Sonne. Das ist in der Forschung heute unumstritten. Inzwischen sind 16 superschnelle Sterne unter den 100 Milliarden Sternen der Milchstraße bekannt. Die Wissenschaftler des Astronomischen Instituts der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) fanden schon im letzten Jahr Hinweise, dass es neben dem Schwarzen Loch auch andere Mechanismen geben muss, die die Sterne herausschleudern.

Dieser Verdacht hat sich im Rahmen der Diplomarbeit des Regensburger Physikstudenten Andreas Irrgang erhärtet. Er hat in einem Kooperationsprojekt der FAU und der Universität Regensburg den superschnellen Stern HIP 60350 untersucht, der sich in ca. 10.000 Lichtjahren Entfernung von der Erde befindet. Anhand von Daten des Hobby-Eberly Telescopes in Texas, das mit 9,2 Metern Durchmesser zu den größten der Welt gehört, gelang es Irrgang, die Herkunft von HIP 60350 zu berechnen: Demnach entstand der Stern weit außerhalb des Zentrums der Galaxis und damit in großer Entfernung zum Schwarzen Loch.

Es gibt zwei mögliche Erklärungen, weshalb er trotzdem aus der Galaxis herausgeschleudert wird: Zum einen könnte es in einem Doppelsternsystem eine Explosion gegeben haben, bei der der eine Stern zerstört und der andere herauskatapultiert wurde. Denkbar ist aber auch, dass in einem Sternhaufen mehrere Sterne, fast wie im Billardspiel, zusammenstoßen und einer ausgeworfen wird. Sternhaufen gelten als Geburtsorte der Sterne und befinden sich in den Spiralarmen der Milchstraße. Andreas Irrgang konnte fünf Sternhaufen als mögliche Geburtsorte identifizieren, die sich in einem Spiralarm befinden, der zwischen den Sternbildern Schild und "Kreuz des Südens" liegt.

Aus welchem Sternhaufen HIP 60350 stammt, können Prof. Heber und sein Team ermitteln, wenn die Europäische Weltraum Agentur ESA das Weltraumobservatorium Gaia in Betrieb nimmt, mit dem der gesamte Sternenhimmel neu vermessen wird. Gaias Messungen werden hundert Mal genauer sein als alle bisherigen und es den Astronomen der Universität Erlangen-Nürnberg ermöglichen, der Lösung des Rätsels um die superschnellen Sterne einen großen Schritt näher kommen.

Andreas Irrgangs Diplomarbeit entstand im Rahmen des beschleunigten Studiengangs Physik des Elitenetzwerk Bayerns der Universitäten Erlangen-Nürnberg und Regensburg am Astronomischen Institut der FAU. Weitere Kooperationspartner waren die Universität Göttingen und das Max-Planck-Institut für Astrophysik in Garching bei München.

Bilder zum Download:
Bugschock eines superschnellen Sterns, aufgenommen mit dem Weltraumteleskop Hubble:

http://imgsrc.hubblesite.org/hu/db/images/hs-2009-03-c-full_jpg.jpg

Das Hobby-Eberly Telescope in Texas:
http://mcdonaldobservatory.org/images/news/gallery/het_aerial.jpg
Das Weltraumobservatorium Gaia der ESA:
http://esamultimedia.esa.int/images/Science/gaia/GAIA_Cam01_3_H.jpg
Weitere Informationen für die Medien:
Prof. Dr. Ulrich Heber
Tel.: 0951/9522214
Ulrich.Heber@sternwarte.uni-erlangen.de

Sandra Kurze | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rekord-Gammastrahlenblitz aus den Tiefen des Weltraums
20.11.2019 | Julius-Maximilians-Universität Würzburg

nachricht Kosmische Gammastrahlenblitze mit beispielloser Energie
20.11.2019 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics