Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um pulsierende Sterne gelöst

25.11.2010
Ein internationales Astronomenteam hat das erste Doppelsternsystem entdeckt, bei dem sich ein pulsierender veränderlicher Stern vom Typ der Cepheiden und sein Begleitstern gegenseitig bedecken.

Ein Jahrzehnte altes Rätsel konnte damit gelöst werden, denn es gab zwei miteinander unverträgliche theoretische Vorhersagen für die Massen von Cepheiden.


Künstlerische Darstellung des außergewöhnlichen Doppelsternsystems OGLE-LMC-CEP0227
Abbildung: ESO/L. Calçada

Die seltene Konfiguration der Bahnen der beiden Sterne in dem Doppelsternsystem ermöglichte die bisher genaueste Bestimmung der Masse eines Cepheiden. Die neuen Resultate bestätigen nun die Vorhersage aus der Theorie stellarer Pulsationen, während die Abschätzungen aus der Theorie der Sternentwicklung mit den Beobachtungen nicht vereinbar sind.

Die neuen Forschungsergebnisse des Teams, das von Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Polen) geleitet wird, erscheinen am 25. November 2010 in der Fachzeitschrift Nature.

Grzegorz Pietrzyński erläutert die neuen Resultate: “Mit dem HARPS-Instrument am 3,6 Meter Teleskop des Observatoriums der ESO auf La Silla in Chile und anderen Teleskopen gelang es uns, die Masse eines Cepheiden viel genauer als in vorangegangenen Studien zu messen. Dieses neue Ergebnis ermöglicht es uns, sofort festzustellen welche der beiden konkurrierenden Theorien zur Vorhersage der Massen von Cepheiden die richtige ist.”

Klassische veränderliche Sterne vom Typ δ Cephei, oder kurz Cepheiden, sind instabile Sterne, die größer und viel heller als die Sonne sind [1]. Sie dehnen sich regelmäßig aus und ziehen sich anschließend wieder zusammen, wobei ein solcher Kreislauf je nach Stern zwischen einigen Tagen und mehreren Monaten dauert. Die Zeit die der Cepheide braucht, um heller und anschließend wieder dunkler zu werden, ist länger bei leuchtkräftigeren und kürzer bei leuchtschwächeren Sternen. Dieser Zusammenhang ist erstaunlich genau bestimmbar. Das macht die Untersuchung von Cepheiden zu einem der besten Werkzeuge zur Vermessung der Entfernungen naher Galaxien, mit deren Hilfe sich wiederum die Entfernungsskala des gesamten Universums eichen lässt [2].

Trotz ihrer großen Bedeutung versteht man die Cepheiden noch immer nicht vollständig. Vorhersagen ihrer Massen aus der Theorie der Sternpulsationen liegen 20-30% niedriger als Vorhersagen aus der Theorie der Sternentwicklung. Dieses drängende Problem ist seit den 60er Jahren bekannt.

Um dieses Rätsel zu lösen, mussten die Astronomen einen Doppelstern finden, der einen Cepheiden enthält und auf dessen Bahnebene man von der Erde aus von der Seite sieht. Bei einem solchen so genannten Bedeckungsveränderlichen ändert sich die scheinbare Helligkeit des Sternsystems, wenn einer der beiden Komponenten auf seiner Umlaufbahn vor der anderen vorbeizieht, und nochmals wenn er hinter seinem Begleiter entlangläuft. Für so ein Doppelsternpaar können Astronomen die Massen der Sterne sehr genau bestimmen [3]. Leider treten sowohl Cepheiden als auch Bedeckungsveränderliche nicht besonders häufig auf, so dass die Chance so ein ungewöhnliches Paar zu finden recht gering zu sein schien. In der Milchstraße ist kein derartiges Sternenpaar bekannt.

Wolfgang Gieren, ein weiteres Teammitglied, greift den Faden auf: “Vor kurzem haben wir tatsächlich in der Großen Magellanschen Wolke das Doppelsternsystem gefunden auf das wir gehofft hatten. Es enthält einen Cepheiden der mit einer Periode von 3,8 Tagen pulsiert. Der Begleitstern ist etwas grösser und kühler. Beide Sterne umkreisen sich einmal alle 310 Tage. Bei der Beobachtung mit dem HARPS Spektrographen auf La Silla offenbarte sich sofort die wahre Natur des Objekts als Doppelsternsystem.”

Während die beiden Sterne auf ihren Umlaufbahnen voreinander herzogen, vermaßen die Beobachter sorgfältig die Helligkeitsschwankungen des seltenen Objekts, das die Bezeichnung OGLE-LMC-CEP0227 [4] trägt. Ebenso verwendeten sie HARPS und andere Spektrografen um die Bewegungen der Sterne auf die Erde zu und von ihr Weg zu messen – und zwar sowohl die Umlaufbewegung beider Sterne, als auch die Bewegung der Oberfläche des Cepheiden während er anschwoll und sich wieder zusammenzog.

Der vollständige und sehr detaillierte Datensatz ermöglichte den Beobachtern die Bestimmung der Bahnbewegung, der Größen und der Massen beider Sterne mit großer Genauigkeit – viel genauer als das jemals zuvor für einen Cepheiden gelungen war. Dessen Masse ist nun mit einer Unsicherheit von nur etwa 1% bekannt, und stimmt exakt mit Vorhersagen aus der Theorie der Sternpulsationen überein. Die Vorhersage einer größeren Masse aus der Theorie der Sternentwicklung stellte sich dagegen als falsch heraus.

Die stark verbesserte Bestimmung der Masse ist nur eines der Ergebnisse der Studie. Das Team hofft, weitere Exemplare dieser bemerkenswert nützlichen Sternpaare zu finden, um die beschriebene Methode noch mehrfach anwenden zu können. So glauben die Forscher mit Hilfe solcher Doppelsternsysteme schließlich die Entfernung zur Großen Magellanschen Wolke mit einer Genauigkeit von 1% bestimmen zu können. Das wiederum wäre eine äußerst wichtige Verbesserung der kosmischen Entfernungsleiter.

Notizen

[1] Die ersten Veränderlichen vom Typ der Cepheiden wurden im 18. Jahrhundert entdeckt, und die Helligkeitsschwankungen der hellsten unter ihnen können von Nacht zu Nacht bereits mit dem bloßen Auge verfolgt werden. Ihr Name leitet sich vom Stern δ Cephei im Sternbild Cepheus (ein äthiopischer König aus der griechischen Mythologie) ab, dessen Lichtwechsel von John Goodricke in England im Jahr 1784 entdeckt wurde. Bemerkenswerterweise gelang Goodricke auch die Erklärung des Lichtwechsels einer anderen Klasse von veränderlichen Sternen, nämlich der Bedeckungsveränderlichen. dabei handelt es sich um Doppelsternsysteme, bei denen die Komponenten während ihrer Bahnbewegungen jeweils vor und hinter dem Begleiter vorüberziehen, was als scheinbare Abschwächung der Gesamthelligkeit des Paares zu beobachten ist. Das sehr seltene Objekt, das in dieser Studie untersucht wurde, ist sowohl ein Cepheide als auch ein Bedeckungsveränderlicher. Klassische Cepheiden sind massereiche Sterne und unterscheiden sich von pulsierenden Veränderlichen geringerer Masse unter anderem in ihrer Entwicklungsgeschichte.

[2] Die Perioden-Leuchtkraft-Beziehung der Cepheiden wurde 1908 von Henrietta Leavitt entdeckt und von Edwin Hubble verwendet, um erste Abschätzungen der Entfernungen zu Objekten durchzuführen, von denen wir heute wissen, dass sie fremde Galaxien sind. Cepheiden wurden mit dem Hubble Space Telescope und dem VLT der ESO auf dem Paranal beobachtet um sehr genaue Entfernungen zu vielen nahen Galaxien zu messen.

[3] Insbesondere können Astronomen die Massen der beiden Sterne mit sehr hoher Genauigkeit bestimmen wenn beide Sterne ähnlich hell sind, und daher die Spektrallinien beider Partner gleichzeitig im beobachteten Spektrum sichtbar sind. Dies ist bei dem beschriebenen Objekt der Fall.

[4] Die Bezeichnung OGLE-LMC-CEP0227 verweist darauf dass die Veränderlichkeit des Objekts im Rahmen des OGLE Projektes zur Suche nach Mikro-Gravitationslinsen-Ereignissen entdeckt wurde. Weiterführende Informationen zu OGLE sind unter http://ogle.astrouw.edu.pl/ verfügbar.

Weitere Informationen

Die hier beschriebenen Forschungsergebnisse wurden am 25 November 2010 veröffentlicht in der Fachzeitschift Nature veröffentlicht.

Die beteiligten Wissenschaftler sind G. Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Polen), I. B. Thompson (Carnegie Observatories, USA), W. Gieren (Universidad de Concepción, Chile), D. Graczyk (Universidad de Concepción, Chile), G. Bono (INAF-Osservatorio Astronomico di Roma, Universita’ di Roma, Italien), A. Udalski (Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Polen), I. Soszyński (Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Polen), D. Minniti (Pontificia Universidad Católica de Chile) und B. Pilecki (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Polen).

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 14 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts, sowie VISTA, das größte Durchmusterungsteleskop der Welt. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO das European Extremely Large Telescope (E-ELT) für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, mit 42 Metern Spiegeldurchmesser ein Großteleskop der Extraklasse.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Deutschland
Tel: 06221 528 226
E-Mail: eson@mpia.de
Grzegorz Pietrzyński
Universidad de Concepción
Chile
Tel: +56 41 220 7268
Cell: +56 9 6245 4545
E-Mail: pietrzyn@astrouw.edu.pl
Wolfgang Gieren
Universidad de Concepción
Chile
Tel: +56 41 220 3103
Cell: +56 9 8242 8925
E-Mail: wgieren@astro-udec.cl
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
E-Mail: rhook@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org/public/germany/news/eso1046/
http://www.eso.org/public/archives/releases/sciencepapers/eso1046/eso1046.pdf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics