Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel Antimaterie: Spurensuche mit hochintegriertem Teilchensensor

09.11.2015

In München wurde kürzlich ein hochempfindlicher Sensor zur präzisen Vermessung von Teilchenspuren vorgestellt. Es handelt sich um das erste Modul für den Vertex-Detektor des Belle II-Experiments am japanischen Beschleunigerzentrum KEK. Der Detektor soll ab 2017 zum Einsatz kommen und Kollisionen von Elektronen und deren Antiteilchen, den Positronen, aufzeichnen. Mit diesen Experimenten gehen Wissenschaftler der Frage nach, warum es im heutigen Universum kein nennenswertes Vorkommen von Antimaterie gibt.

Der Sensor ist eine Entwicklung des Halbleiterlabors der Max Planck-Gesellschaft (MPG). Der Belle II-Vertex-Detektor entsteht in einer internationalen Kooperation unter Leitung des Max-Planck-Instituts für Physik.




Jetzt fertiggestellt: Das erste, voll funktionsfähige Sensormodul des Vertex-Detektors im Belle II-Experiment

L. Andricek/HLL@MPG

Im Experiment bringen Wissenschaftler Elektronen und Positronen zur Kollision und werten die Zerfallspuren der produzierten schweren Mesonen und deren Antiteilchen aus. "Wir suchen dabei nach winzigen Unterschieden. Dafür ist die präzise Vermessung des Zerfallsortes – auch als Vertex bezeichnet – entscheidend", erklärt Prof. Christian Kiesling, Wissenschaftler am Max-Planck-Institut für Physik. "Zuständig für die Messungen ist der jetzt fertiggestellte, wegen seiner Eigenschaften weltweit konkurrenzlose Sensor."

Hergestellt aus 1000-fach reinerem Silizium als herkömmliche Transistoren oder Speicherchips, integriert das Modul auf einer Fläche von acht Quadratzentimetern 200.000 DEPFET-Pixelzellen. DEPFET steht für für Depleted p-channel Field Effect Transistor. Er wurde am Halbleiterlabor (HLL) der MPG erfunden und wird ausschließlich dort gefertigt.

Das DEPFET-Bauteil erlaubt den Nachweis von Photonen oder, so wie hier, von hochenergetischen Teilchen mit höchster Effizienz und Präzision. "Der grundlegende Prozess ist dem, der in herkömmlichen Foto- oder Videokameras abläuft, sehr ähnlich", erklärt Dr. Jelena Ninkovic, Leiterin des HLL. "Jedoch ist das primäre Signal beim Nachweis von einzelnen Photonen oder Teilchen sehr viel kleiner."

Selbstverstärkender Sensor

Hier kommt der große Vorteil des DEPFET zum Tragen: Das sehr kleine primäre Signal wird in dem Sensor selbst verstärkt. Der DEPFET ist somit das Sensormaterial und die erste Verstärkerstufe in Einem. Durch die Anordnung vieler DEPFETs zu einer Matrix entsteht ein Bildsensor, mit dem man den Entstehungsort eines Teilchens genau bestimmen kann. "In unserem Fall geschieht das mit einer Genauigkeit von etwa einem Hundertstel eines Millimeters", so Ninkovic weiter.

Die Ansteuerung der Pixel in einer Matrix und die schnelle Verarbeitung des DEPFET-Signals erfordert zusätzliche Elektronik, die in Kollaboration mit deutschen Universitäten entstanden ist. Diese Elektronik wird in Form von anwenderspezifischen Schaltkreisen (ASICs) direkt auf das Sensorsubstrat aufgebracht. Mit den ASICs lassen sich die Signale der Pixelmatrix digitalisieren und die Datenmenge verlustfrei reduzieren, um sie in höchster Geschwindigkeit (50.000 Bilder pro Sekunde) zu übertragen.

Komplexe Elektronik auf haarfeiner Siliziumfolie

Die DEPFET Matrix wird dadurch zu einem sehr komplexen Modul mit maximaler Integrationsdichte, das trotz aller Komplexität extrem dünn und leicht ist, um die Messung der Teilchenspuren nicht durch das Sensormaterial selbst zu verfälschen.

Das HLL hat dafür eine einzigartige Technologie entwickelt. Sie erlaubt es, extrem dünne und hoch integrierte Sensormodule herzustellen. Der sensitive Teil des Moduls, die DEPFET Matrix, wird dabei durch angepasste Ätzverfahren auf 75 Mikrometer verdünnt, was der Dicke eines menschlichen Haares entspricht.

Diese an sich biegsame „Folie“ aus Silizium wird durch einen monolithisch integrierten Rahmen unterstützt, auf dem die Auslese- und Steuerelektronik aufgebracht ist. Die Spannungsversorgung und die Datenleitungen laufen über ein flexibles Flachbandkabel, das am Ende des Moduls angebracht ist.

Die HLL-Technologie erlaubt es, die dünnen DEPFET Matrizen zylinderförmig ohne jede weitere Unterstützung um den Wechselwirkungspunkt des Experiments anzuordnen. Die hochpräzise Messung von Teilchenspuren wird damit zur Realität.

Mehr Information:
Das Halbleiterlabor der Max-Planck-Gesellschaft: http://www.hll.mpg.de/index.html
Das Belle II-Experiment am Max Planck-Institut für Physik: https://www.mpp.mpg.de/forschung/experimental/belle/index.html
Webseite des SuperKEKB-Experiments: http://www.kek.jp/en/

Kontakt:

Dr. Jelena Ninkovic
Leiterin des Halbleiterlabors der Max-Planck-Gesellschaft
Tel.: +49 89 839400-49
nin@hll.mpg.de

Prof. Dr. Christian Kiesling
Sprecher der DEPFET-Kollaboration
Max-Planck-Institut für Physik
Tel.: +49 89 32354-258
cmk@mpp.mpg.de

Weitere Informationen:

https://www.mpp.mpg.de/pr/medienarchiv/03_print/pressemeldungen/pressemeldungen2...

Barbara Wankerl | Max-Planck-Institut für Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics