Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radioteleskop LOFAR blickt tief in den Blitz

18.04.2019

Was genau beim Ausbilden von Blitzen passiert, ist noch immer unklar. Ein internationales Team hat jetzt mit hochauflösenden Daten des Radioteleskops LOFAR nadelförmige Strukturen entdeckt. Mit den bislang unbekannten Nadeln lässt sich möglicherweise erstmals erklären, warum ein Blitz sich nicht wie lange angenommen mit einem Mal entlädt – sondern binnen Sekunden mehrfach einschlägt. Wichtige Grundlagen für die Messung von Blitzen mit dem weltweit größten Antennen-Array wurden am Karlsruher Institut für Technologie gelegt. Seine Ergebnisse veröffentlicht das Team heute in der Fachzeitschrift Nature (DOI: 10.1038/s41586-019-1086-6).

Wenn in einer Gewitterwolke Eiskristalle gegeneinander prallen, laden sie sich elektrisch auf. Winde können die Kristalle trennen, sodass ein Teil der Wolke positiv, der andere negativ geladen ist. Wird das so entstehende elektrische Spannungsfeld zu groß, kommt es zu einer heftigen Entladung – die wir als Blitz und Donner wahrnehmen.


Die Entladung beginnt mit einem kleinen Volumen von Luft, in dem Elektronen sich von den Luftmolekülen trennen. Diese ionisierte Luft, auch Plasma genannt, ist elektrisch leitend. Das Plasma breitet sich als verzweigte Kanäle aus, bis es auf die Erde trifft und sich die elektrische Spannung der Wolken als Blitz entlädt.

Über die genauen Prozesse in diesen Kanälen bis hin zur jüngsten Entdeckung der „Blitznadeln“, geben hochauflösende, aus Radiosignalen von Blitzen abgeleitete Daten Aufschluss.

Gemessen haben die Forscherinnen und Forscher sie mit dem niederländischen Radioteleskop LOFAR (steht für Low Frequency Array), an dem auch das KIT beteiligt ist.

Die aktuellen Beobachtungen des LOFAR-Forscherteams zeigen, dass positiv geladene Plasmakanäle sich bei der Entladung anders verhalten als negativ geladene. Der Grund hierfür sind offenbar nadelförmige Strukturen, die nun erstmals sichtbar werden: Sie führen senkrecht von den positiv geladenen Kanälen weg, sind rund 100 Meter lang und haben einen Durchmesser von weniger als fünf Metern.

Die Wissenschaftler vermuten, dass Teile der Ladung eines positiven Plasmakanals nicht direkt in den Boden abfließen, sondern über die Nadeln in die Gewitterwolke zurückgehen und von dort erst bei späteren Entladungen abfließen. Dies würde erstmals erklären, warum ein Blitz sich nicht wie lange Zeit angenommen mit einem Mal entlädt, sondern binnen Sekunden mehrfach einschlägt.

„Dank der hohen räumlichen und zeitlichen Auflösung von LOFAR können wir die Ausbildung von Blitzen in einer völlig neuen Größenordnung bis hinein in die primären Prozesse untersuchen“, erklärt Dr. Brian Hare von der Universität Groningen und Erstautor der Veröffentlichung im Fachjournal Nature. LOFAR besteht aus tausenden Antennen, die über Europa verteilt sind – ein Array, das in erster Linie für astronomische Beobachtungen entwickelt wurde, mit dem mittlerweile aber auch die kosmische Strahlung gemessen wird.

Hierbei werden die in der Atmosphäre von den kosmischen Teilchen ausgelösten Signale an den einzelnen Antennen in Puffern zwischengespeichert und anschließend für verschiedene Analysen ausgelesen.

„Diese am KIT vorangetriebene Technologie kommt nun auch bei der Messung und Speicherung von Radiosignalen zum Einsatz, die von Blitzen ausgehen“, erläutert Dr. Tim Huege vom Institut für Kernphysik des KIT und Mitglied des „LOFAR Cosmic Ray Key Science Projects“.

Bei den Blitzmessungen erlaubt LOFAR eine räumliche Genauigkeit von bis zu einem Meter und die Erfassung eines Signals pro Mikrosekunde. So entstehen hochauflösende 3D-Filme, die neue Erkenntnisse über die Entladung von Blitzen ermöglichen. Mit seinen Forschungen hat das KIT maßgeblich dazu beigetragen, dass Blitzbeobachtungen mit einer solchen Präzision möglich sind.

Den Grundstein für die Messung kosmischer Teilchen und somit auch für eine detailliertere Erforschung von Blitzen legten Experimente mit dem digitalen Antennenfeld „LOPES“ (LOfar PrototypE Station), die bis 2013 im Rahmen der Forschungen auf dem Gelände des KIT als Teil des KASCADE-Grande-Teilchendetektorfelds liefen.

3-D-Animationen der Blitzentwicklung im Radiolicht

Credits: Stijn Buitink, Universität Brüssel (Vrije Universiteit Brussel), und Brian Hare, Universität Groningen:

Animation 1: Zeitlupe eines entstehenden Blitzes, der in Realität 0,2 Sekunden dauert und etwa 5 Kilometer in alle Richtungen umspannt. Die gelben Punkte geben aktuelle Radiosignale wieder, die weißen zur Illustration die vergangenen.
https://drive.google.com/file/d/1cIYqDiQ811Swm0nkroYVtfB4wwsF_sBW/view

Animation 2: Nahaufnahme eines Plasmakanals, der in Realität 0,1 Sekunden anhält und 400 Meter durchspannt. Einer der neuentdeckten nadelförmigen Strukturen ist rot gekennzeichnet.
https://drive.google.com/file/d/1lZVco-jzkjyEKBJP4Ddpyc8_ow-uy1tC/view

Originalveröffentlichung:
Brian Hare, Olaf Scholten, et al. Needle-like structures discovered on positively charged lightning branches. Nature, 18 April 2019, https://www.nature.com, DOI: 10.1038/s41586-019-1086-6.

KIT-Centrum Elementarteilchen- und Astroteilchenphysik (KCETA): http://www.kceta.kit.edu

Weiterer Kontakt:

Dr. Joachim Hoffmann, Redakteur/Pressereferent, Tel.: +49 721 608-21151, E-Mail: joachim.hoffmann@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 100 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Wissenschaftliche Ansprechpartner:

joachim.hoffmann@kit.edu

Originalpublikation:

Brian Hare, Olaf Scholten, et al. Needle-like structures discovered on positively charged lightning branches. Nature, 18 April 2019, https://www.nature.com, DOI: 10.1038/s41586-019-1086-6.

Weitere Informationen:

https://drive.google.com/file/d/1cIYqDiQ811Swm0nkroYVtfB4wwsF_sBW/view
https://drive.google.com/file/d/1lZVco-jzkjyEKBJP4Ddpyc8_ow-uy1tC/view
https://www.nature.com
http://www.kceta.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

nachricht Rätsel gelöst: Das Quantenleuchten dünner Schichten
15.10.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungsnachrichten

Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

16.10.2019 | Messenachrichten

Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

16.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics