Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radioaktive Abfälle: Lagerzeiten deutlich verkürzen

19.12.2011
Langlebige Transurane lassen sich durch Beschuss mit Neutronen in radioaktive Elemente mit deutlich kürzerer Halbwertszeit umwandeln. Dazu benötigt man Beschleuniger, an deren Entwicklung auch Physiker der Goethe-Universität beteiligt sind. Im belgischen Mol laufen die Vorbereitungen für den Bau einer europäischen Demonstrationsanlage.

Global gesehen ist in den nächsten Jahrzehnten mit einem massiven Ausbau der Kernenergie zu rechnen, so dass der radioaktive Abfall weiter anwachsen wird.

Eine vielversprechende Möglichkeit, die extrem langen Halbwertszeiten von einigen Millionen Jahren auf wenige Hundert Jahre zu verkürzen, ist die Transmutation: Durch die Bestrahlung mit schnellen Neutronen können Transurane wie Plutonium in Elemente mit einer kürzeren Halbwertszeit umgewandelt werden. Physiker des Instituts für Angewandte Physik der Goethe-Universität beteiligten sich führend an der Konstruktion eines Beschleunigers, der die dazu benötigten Neutronen auf wirtschaftliche Weise erzeugt. Darüber berichtet Privatdozent Dr. Holger Podlech in der soeben erschienenen Ausgabe des Wissenschaftsmagazins Forschung Frankfurt /3/2011).

Unter den radioaktiven Abfällen stellen die Transurane das größte Gefahrenpotenzial dar: Sie sind chemisch hochgiftig und ihre Strahlung zerstört biologisches Gewebe. Unbehandelte abgebrannte Brennelemente müssen dementsprechend für Millionen von Jahren endgelagert werden. Allerdings gibt es weltweit kein einziges genehmigtes Endlager, noch ist die gesellschaftliche Akzeptanz dafür gegeben. Eine Lösung könnte die Transmutation sein: Bestrahlt man nämlich die Transurane mit schnellen Neutronen, werden sie in wesentlich kurzlebigere Isotope umgewandelt.

„Neutronen sind gewissermaßen der Schlüssel zur modernen Alchimie. Wir wandeln nicht Metalle in Gold um, sondern hochtoxische in weniger toxische radioaktive Elemente“, erläutert Privatdozent Holger Podlech. „Die sind dann nicht gefährlicher als natürlich vorkommendes Uranerz.“ Die Lagerzeit kann entsprechend um einen Faktor 10.000 verkürzt werden, was die Zeitskala von geologischen zu historischen Dimensionen verschiebt. Darüber hinaus können die transmutierten radioaktiven Elemente erneut zur Energiegewinnung genutzt werden, was einen nachhaltigen Umgang mit den knapper werdenden Ressourcen ermöglicht.

Wie ein geeigneter Reaktor samt Beschleuniger für die Transmutation beschaffen sein muss, ist in den letzten Jahren im Rahmen der Europäischen Studie EUROTRANS untersucht worden. Seit März 2011 laufen die dreijährigen Vorbereitungen für den Bau der Demonstrationsanlage im belgischen Mol. Es handelt sich um einen supraleitenden Linearbeschleuniger von 250 Metern Länge und einer Beschleunigungsspannung von 600 Millionen Volt. Das Institut für Angewandte Physik der Goethe-Universität ist als weltweit führendes Labor für Niederenergie-Beschleuniger verantwortlich für die Entwicklung des 17 Mega-Elektronen-Volt Injektors, in dem die Neutronen erzeugt werden. Dieses MYRRHA (Multi Purpose Hybrid Reactor for High Tech Applications) genannte Projekt mit Baukosten von einer Milliarde Euro soll die großtechnische Machbarkeit der Transmutation zeigen. Eine zukünftige industrielle Transmutationsanlage (EFIT, European Facility for Industrial Transmutation) hätte etwa die zehnfache Leistung und könnte den Abfall von bis zu zehn Kernkraftwerken gleichzeitig entsorgen.

In Internet: http://www.forschung-frankfurt.uni-frankfurt.de/2011/index.html
Informationen: Privatdozent Dr. Holger Podlech, Institut für Angewandte Physik, Campus Riedberg, Tel: (069) 798- 47453; H.Podlech@iap.uni-frankfurt.de

Kostenlose Bestellung der Printausgabe per Mail an: ott@pvw.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit.

Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.forschung-frankfurt.uni-frankfurt.de/2011/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics