Qubits kühlen klassische Schwingkreise

Eine neue Richtung in der modernen Physik eröffnen Wissenschaftler des Institutes für Photonische Technologien (IPHT): Ihnen gelang es, einen Effekt der Quantenoptik auf die Festkörperphysik zu übertragen.

Ein klassischer Schwingkreis wurde mit Hilfe von künstlichen makroskopischen Quantenobjekten, so genannte Qubits, abgekühlt.

„Damit konnten wir experimentell bestätigen, was theoretisch schon lange vorausgesetzt wurde“, erläutert Dr. Evgeni Il'ichev aus der Abteilung Quantendetektion des IPHT. Die Ergebnisse haben er und seine IPHT-Kollegen zusammen mit Wissenschaftlern aus Bratislava, Delft, Innsbruck und Karlsruhe jetzt in der renommierten Fachzeitschrift „Nature Physics“ veröffentlicht.

Neun Monate Arbeit und mehrere hunderttausend Euro hat es Ilichev und sein Team gekostet, den Messstab für das entscheidende Experiment zu entwickeln, der in einem Labor des IPHT, umgeben von einem mit flüssigen Helium gefüllten Kühlbehälter, hängt. Den Ausgangspunkt für die Versuche bildet die Laserkühlung von Atomen, für die der französische Physiker Claude Cohen-Tannoudji 1997 den Nobelpreis erhielt. Atome oder Moleküle können durch die kontrollierte Aufnahme von Lichtteilchen (Photonen) aus einem Laserstrahl extrem abgekühlt werden.

Dadurch bewegen sie sich sehr viel langsamer als ungekühlte Teilchen und verbleiben länger in einer Messapparatur, wodurch präzisere Messungen ermöglicht werden. Das nutzt man zum Beispiel, um die Genauigkeit von Atomuhren zu steigern.

„Unser Versuchsaufbau ahmt diesen Ansatz nach“, so Il'ichev. Doch statt eines einzelnen Atoms, das sich nach den Gesetzen der Quantenphysik verhält, kühlen die IPHT-Wissenschaftler einen so genannten Schwingkreis. Das ist eine resonanzfähige elektrische Schaltung aus einer Spule und einem Kondensator, die elektrische Schwingungen ausführen kann.

In diesem Schwingkreis herrscht ein elektromagnetisches Feld niedriger Frequenz. Gekühlt wird dieser Schwingkreis in Il'ichevs Experiment durch ein Qubit – also ein Zweizustandsquantensystem. Die Energieabstände zwischen den beiden Zuständen des Qubits sind dabei so gewählt, dass sie im Mikrowellenbereich liegen. Deshalb lässt sich das Qubit durch Photonen mit Mikrowellenfrequenz anregen und zieht daraufhin Energie aus dem Schwingkreis heraus – kühlt ihn also ab. „Wir konnten so nachweisen, dass sich supraleitende Qubits wie künstliche Atome verhalten und Quanteneffekte zeigen – und dass, obwohl sie über Milliarden von Elektronen verfügen und nicht nur über 55, wie zum Beispiel das in Atomuhren verwendete Cäsium“, so Il'ichev.

Die Versuche sind als reine Grundlagenforschung zu werten, betont Il'ichev. Sie können allerdings die Basis für die Entwicklung extrem empfindlicher Detektoren sein, etwa zur Schallmessung oder auch für den Nachweis von Photonen mit sehr geringer Frequenz.
Ihre Ansprechpartner:
PD Dr. Hans-Georg Meyer
Abteilung Quantendetektion
Telefon +49 (0) 3641/ 206 116
Telefax +49 (0) 3641/ 206 199
hans-georg.meyer@ipht-jena.de
Dr. Evgeni Il'ichev
Abteilung Quantendetektion
Telefon +49 (0) 3641/ 206 121
Telefax +49 (0) 3641/ 206 199
evgeni.ilichev@ipht-jena.de
Die Arbeit ist erschienen in der aktuellen Ausgabe von Nature Physics:
„Sisyphus cooling and amplification by a superconducting qubit“
M. Grajcar, S. H. W. van der Ploeg, A. Izmalkov, E. Il'ichev, H.-G. Meyer, A. Fedorov, A. Shnirman & Gerd Schön
Nature Physics 4, 612 – 616 (2008)
(Published online: 6 July 2008 | doi:10.1038/nphys1019)

Media Contact

Susanne Liedtke idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer