Quantenzustände in einem Nanoobjekt lassen sich durch mechanisches System manipulieren

Der schwingende Federbalken beeinflusst den Spin der Elektronen in den Stickstoffvakanzzentren (rote Pfeile). Universität Basel

Die Gruppe um den Georg-H.-Endress-Professor Patrick Maletinsky hat bereits in vorangegangen Veröffentlichungen beschrieben, dass sich Federbalken aus einkristallinen Diamanten mit einzelnen eingebetteten Elektronen bestens eignen, um den Spin dieser Elektronen zu adressieren.

Diese Diamant-Federbalken wurden an mehreren Stellen so modifiziert, dass in ihrem Kristallgitter ein Kohlenstoffatom durch ein Stickstoffatom ersetzt wurde und gleich daneben eine Leerstelle entstand. In diesen «Stickstoff-Vakanzzentren» kreisen einzelne Elektronen, deren Spin oder Eigendrehimpuls in dieser Arbeit untersucht wurde.

Wird nun der Federbalken in Schwingung versetzt, entstehen Spannungen in der Kristallstruktur des Diamanten. Dies hat wiederum einen Einfluss auf den Spin der Elektronen, der bei einer Messung in zwei mögliche Richtungen (nach «oben» oder «unten») zeigen kann. Mithilfe von Fluoreszenzspektroskopie lässt sich diese Ausrichtung des Spins auslesen.

Extrem schnelle Spin-Oszillation

In der aktuellen Veröffentlichung haben die Wissenschaftler die Federbalken nun so geschüttelt, dass sie dadurch erstmals eine kohärente Oszillation des gekoppelten Spins induzieren konnten. Das bedeutet, dass der Eigendrehimpuls der Elektronen kontrolliert in einem schnellen Rhythmus von oben nach unten und umgekehrt wechselt und die Wissenschaftler zu jedem Zeitpunkt den Spinzustand kontrollieren können. Dabei ist diese Oszillation des Spins schnell verglichen mit der Frequenz des Federbalkens. Sie schützt den Spin zudem vor schädlichen Dekohärenz-Mechanismen.

Gut vorstellbar ist eine Anwendung dieser Diamant-Federbalken in der Sensorik, da sich die Auslenkung des Federbalkens über den veränderten Spin erfassen lässt, und zwar potenziell auf eine sehr sensitive Art und Weise.

Zudem kann nach den neuen Erkenntnissen der Spin über einen recht langen Zeitraum von annähernd hundert Mikrosekunden kohärent rotiert werden, was die Präzision der Messung erhöht. Eventuell liessen sich Stickstoff-Vakanzzentren auch zur Entwicklung eines Quantencomputers heranziehen. In diesem Fall wäre die in dieser Arbeit gezeigte schnelle Manipulation ihrer Quantenzustände ein entscheidender Vorteil.

Originalbeitrag

Arne Barfuss, Jean Teissier, Elke Neu, Andreas Nunnenkamp, Patrick Maletinsky
Strong mechanical driving of a single electron spin
Nature Physics (2015), doi: 10.1038/nphys3411

Weitere Auskünfte

Prof. Patrick Maletinsky, Swiss Nanoscience Institute der Universität Basel, Tel. +41 61 267 37 63, E-Mail: patrick.maletinsky@unibas.ch

http://dx.doi.org/10.1038/nphys3411 – Abstract

Media Contact

Reto Caluori Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer