Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenturbo für verlustfreien Strom

08.06.2010
Quanteneffekte verstärken die Supraleitung von Zinn-Nanopartikeln drastisch

Wann ein Metallteilchen den elektrischen Widerstand verliert, ist auch eine Frage seiner Größe. Die Temperatur, unterhalb derer ein Material zu einem Supraleiter wird, kann nämlich drastisch steigen - wenn der Stoff als Nanokügelchen mit bestimmtem Durchmesser vorliegt.

Das haben Forscher des Stuttgarter Max-Planck-Instituts für Festkörperforschung mit Kollegen aus Regensburg und Lissabon nachgewiesen, indem sie Zinn-Nanopartikel mit einem Rastertunnelmikroskop untersuchten. Demnach verstärken Quanteneffekte in den winzigen Teilchen die Supraleitung um bis zu 60 Prozent, aber nur bei "magischen" Größen, die eine Theorie auf den Nanometer genau vorhersagt. Diese Ergebnisse liefern neue Ansatzpunkte, um der verlustfreien Stromleitung auch bei Raumtemperatur näherzukommen. (Nature Materials, Juni 2010)

Mit Materialien, die Strom auch bei sommerlichen Temperaturen noch ohne Widerstand transportieren, ließe sich eine Menge Energie sparen. Supraleiter können das - im Prinzip. Doch die derzeit besten Supraleiter geben ihren Widerstand erst unterhalb von rund minus 170 Grad Celsius auf. Obwohl die Supraleitung bei Raumtemperatur noch immer in weiter Ferne liegt, sind ihr die Forscher des Max-Planck-Instituts für Festkörperforschung ein kleines Stück näher gekommen: Sie haben die kritische Temperatur, unterhalb derer ein Material zum Supraleiter wird, im Labor dramatisch angehoben, indem sie Nanopartikel bestimmter Größe erzeugten.

Die kritische Temperatur steigt - die Physiker sprechen von einer Verstärkung der Supraleitung -, weil die Energiezustände in Nanoteilchen quantisiert sind. In einem größeren Stück des Materials bilden sie dagegen ein breites Band, das sich über das gesamte Material ausdehnt. Für viele Atome ergeben sich nämlich sehr viele dicht beieinander liegende Zustände. Die wenigen Atome in einem Nanoteilchen können dagegen nur eine kleine Zahl von Zuständen besetzen. Die Beschränkung der Quantenzustände ändert die Eigenschaften nanoskopischer Systeme abrupt und oft unvorhergesehen. "In niederdimensionalen Supraleitern ist eine der überraschendsten Konsequenzen, dass Schaleneffekte auftreten, die die Supraleitung verstärken", sagt Klaus Kern, Direktor am Stuttgarter Max-Planck-Institut.

Theoretisch haben Physiker diese Schaleneffekte bereits seit längerem vorhergesagt. Demnach bilden metallische Nanopartikel elektronische Schalen - ähnlich den Schalen, auf denen sich die Elektronen in einzelnen Atomen anordnen. Auch die Elektronen in den Nanopartikeln besetzen nun diese Schalen. Bei bestimmten Anzahlen schließen sich die Elektronen in den Schalen leichter zu Cooper-Paaren zusammen, die sich ohne Widerstand durch das Material bewegen können. Wann sich in den Schalen die ‚magischen’ Anzahl von Elektronen versammeln, hängt auch von der Größe und Form der Partikel ab.

"Die Experimente, um die vorhergesagten Quanteneffekte zu bestätigen, sind extrem anspruchsvoll und erreichen die Grenze des technisch Möglichen", sagt Sangita Bose, die zusammen mit Ivan Brihuega zum ersten Mal untersucht hat, wie die Größe den supraleitenden Zustand individueller Nanopartikel beeinflusst.

Die Forscher haben in einem extrem guten Vakuum zunächst exakte Halbkugeln aus Zinn und Blei gezüchtet, deren Höhen sie gezielt zwischen einem und 50 Nanometern einstellten. Mit einem speziellen Rastertunnelmikroskop, das Forscher des Max-Planck-Instituts entwickelt haben, untersuchten die Physiker anschließend die elektronischen Eigenschaften der Nanoteilchen bei Temperaturen nahe dem absoluten Nullpunkt von rund minus 273 Grad Celsius. Mit sehr hoher Auflösung bestimmten sie für jedes individuelle Teilchen die supraleitende Energielücke. Aus den Energielücken ergeben sich dann die kritischen Temperaturen, bei denen sie Supraleitung auftritt.

Die Experimente zeigten, dass die supraleitende Energielücke der Zinn-Nanopartikel sehr empfindlich auf die Partikelgröße reagiert. Sie nimmt allerdings weder kontinuierlich ab noch steigt sie stetig an, sondern springt vielmehr stark hin und her. "Das sieht zunächst aus wie Rauschen, entspricht aber den Vorhersagen der Theorie", sagt Klaus Kern. Die Größe braucht sich nur um Bruchteile eines Nanometers zu ändern, und schon springt die kritische Temperatur in die Höhe, bevor sie im nächst kleineren Partikel schon wieder drastisch abfällt. Für Blei-Nanopartikel fällt der Effekt weit schwächer aus. In beiden Materialien tritt allerdings überhaupt keine Supraleitung mehr auf, wenn die Partikel kleiner als vier Nanometer sind. "Das wurde zwar bereits vor 50 Jahren theoretisch vorhergesagt, wir haben das aber jetzt zum ersten Mal an einzelnen Partikeln nachgewiesen", sagt Ivan Brihuega.

Um die experimentellen Ergebnisse theoretisch zu unterfüttern, haben Antonio M. García-García, Wissenschaftler am Instituto Superior Technico in Lissabon, und Juan D. Urbina von Universität Regensburg, Korrekturen für die endliche Ausdehnung und Form der Partikel in die Standard-BCS-Theorie für Supraleiter eingeführt. Ihre Berechnungen geben die experimentellen Ergebnisse sehr gut wieder. Sie spiegeln auch wider, dass die Supraleitung mit der Größe der Zinn-Nanopartikel stark variiert. Im Blei tritt der Effekt allerdings kaum auf. "Das unterschiedliche Verhalten der beiden Metalle lässt sich mit der unterschiedlichen Kohärenzlänge erklären, die die räumliche Ausdehnung der Elektronenpaare für die Supraleitung beschreibt", sagt Sangita Bose. Die Kohärenzlänge im Zinn ist viel größer als im Blei, was Zinn weitaus empfindlicher gegenüber Quanteneffekten macht.

Da die quantenmechanischen Schaleneffekte in allen Materialien auftreten, lassen sie sich nutzen, um die Supraleitung in vielen Materialien zu verstärken. "Damit eröffnet das ‚Quanten-Engineering’ durch die gezielte Nanostrukturierung eine völlig neue Perspektive für die Supraleitung und bietet auch vielversprechende technologische Aussichten", so Klaus Kern.

Originalveröffentlichung:

Sangita Bose, Antonio M. García- García, Miguel M. Ugeda, Juan D. Urbina, Christian H. Michaelis, Ivan Brihuega and Klaus Kern
Observation of shell effects in superconducting nanoparticles of Sn
Nature Materials, Juni 2010; DOI: 10.1038/NMAt2768
Weitere Informationen erhalten Sie von:
Prof. Dr. Klaus Kern
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 711 689-1660
E-Mail: k.kern@fkf.mpg.de
Dr. Sangita Bose
Tata Institute of Fundamental Research, Mumbai (Indien)
Tel.: +91 22 2278 2446
E-Mail: sangita.bose@gmail.com

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
21.10.2019 | Universität Basel

nachricht Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum
21.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungsnachrichten

Das Stromnetz fit für E-Mobilität machen

21.10.2019 | Förderungen Preise

Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum

21.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics