Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteilchen in Reih und Glied

19.08.2010
Wissenschaftlern am Max-Planck-Institut für Quantenoptik gelingen
„in situ-Schnappschüsse“ einzelner Atome in einem hochgeordneten Quantengas.

Kalte Atome in optischen Gittern haben sich in den letzten Jahren zu einem interdisziplinären Werkzeug der Quanten- und Festkörperphysik entwickelt. Bislang waren die Möglichkeiten, Quantengase auf mikroskopischer Skala zu manipulieren und zu beobachten, jedoch sehr begrenzt.


Im BEC schwankt die Dichte der Atome erheblich von Gitterplatz zu Gitterplatz (links). Der Mott-Isolator (Mitte) weist dagegen eine fast vollkommen geordnete Struktur auf. Bei höheren Teilchenzahlen bildet sich die charakteristische Schalenstruktur aus (rechts). MPQ, Abt. Quanten-Vielteilchensysteme

Erstmals hat es jetzt ein Team um Dr. Stefan Kuhr und Prof. Immanuel Bloch vom Max-Planck-Institut für Quantenoptik (Garching bei München) geschafft, ein stark korreliertes System Atom für Atom und Gitterplatz für Gitterplatz direkt sichtbar zu machen (Nature, 18. August 2010, DOI 10.1038/nature09378). Dabei konnten die Physiker beobachten, dass sich die Atome unter bestimmten Bedingungen in optischen Gittern in sehr regelmäßigen Strukturen anordnen, mit einer festen Zahl von Atomen pro Gitterplatz. Dies ist eine wesentliche Voraussetzung dafür, solche Systeme als Quantenregister mit einzeln adressierbaren Quantenbits in zukünftigen Quantencomputern zu nutzen.

Im vorliegenden Experiment hantieren die Physiker mit einer Wolke aus einigen tausend „bosonischen“ Rubidium-Atomen. Bosonen sind gesellige Teilchen, die sich bei extrem tiefen Temperaturen (einigen Nanokelvin) alle im gleichen Quantenzustand befinden – sie bilden dann ein Bose-Einstein-Kondensat (BEC). In dieser extrem kalten Wolke führen die Atome nur noch minimale Bewegungen aus und sind daher durch äußere Lichtfelder leicht zu beeinflussen. Diesen Effekt nutzen die Wissenschaftler, um das atomare Gas gezielt zu strukturieren. Sie überlagern ihm kreuzweise stehende Lichtwellen, die ein „optisches Gitter“ bilden, eine periodische Anordnung aus hellen und dunklen Bereichen. Die Form des Lichtfeldes erinnert an einen Eierkarton: die Vertiefungen (sie entsprechen den hellen Bereichen des Lichtfeldes) sind energetisch besonders günstig. Dort lassen sich die Rubidium-Atome daher bevorzugt nieder.

Je nachdem, wie hoch das Gitter, d.h. wie hoch die Lichtintensität ist, können Korrelationen zwischen den Teilchen zu einem ganz unterschiedlichen Verhalten des Quantengases führen. Wenn die Gitter relativ flach sind, können die Teilchen auf ihren Nachbarplatz hinüber „tunneln“. Das Ensemble stellt dann eine Art „Supraflüssigkeit“ dar. Stellt man die Gitterhöhe durch entsprechend hohe Lichtintensitäten so ein, dass die Teilchen auf ihren Plätzen quasi fixiert sind, dann erhält man einen sogenannten Mott-Isolator (benannt nach dem britischen Physiker und Nobelpreisträger Sir Neville F. Mott).

Modellrechnungen zeigen, dass die Zahl der Atome pro Gitterplatz in einem Mott-Isolator weit weniger schwankt als in dem anfänglichen BEC. Jetzt konnten die MPQ-Forscher dieses Verhalten explizit nachweisen. „Erstmals konnten wir in einem so hochgradig korrelierten System einzelne Atome auf ihren jeweiligen Gitterplätzen sichtbar machen. Das ist eine echte Sensation“, begeistert sich Dr. Stefan Kuhr, der Leiter des Projekts. „Wie auch sonst üblich, „kühlen“ wir die Atome mit Laserstrahlen. Gleichzeitig nutzen wir die dabei ausgesandten Fluoreszenzphotonen, um die Atome mit einem speziell dafür entwickelten Mikroskop sichtbar zu machen. So sind wir in der Lage, die Zahl der Atome pro Gitterplatz zu bestimmen. Auch die Defekte können wir mit solchen „Schnappschüssen“ einzeln erkennen und verfolgen, wie ihre Zahl mit steigenden Temperaturen zunimmt.“

In eine Serie von Messungen bestimmten die Physiker systematisch die Zahl der Atome pro Gitterplatz für unterschiedliche Teilchenzahlen und Temperaturen. Für das BEC ergaben sich erwartungsgemäß von Gitterplatz zu Gitterplatz relativ große Schwankungen. Im Gegensatz dazu erhielten die Wissenschaftler bei einem Mott-Isolator eine fast perfekte Struktur mit einer sehr geringen Fehlerdichte.

Dabei konnten sie auch die für Mott-Isolatoren charakteristischen Schalen beobachten, die sich bei großen Teilchenzahlen ausbilden (siehe Abbildung). Denn das optische Gitter ist nicht eben, sondern folgt dem gaußförmigen Intensitätsprofil des Laserstrahls und ist nach außen hin „verbogen“. Die Gitterplätze in den Außenbereichen liegen energetisch höher und werden erst aufgefüllt, wenn die inneren Plätze besetzt sind. Von außen nach innen wächst die Atomzahl pro Gitterplatz daher stufenweise an. Sobald sich jedoch zwei Atome (bzw. eine gerade Zahl von Atomen) auf einem Gitterplatz befinden, gewinnen sie durch inelastische Stöße soviel kinetische Energie, dass sie die Falle sofort verlassen. Gerade Besetzungszustände machen sich also als dunkle Ringe bemerkbar.

Ein Mott-Isolator, in dem sich auf jedem Gitterplatz genau ein Atom befindet, stellt ein Quantenregister aus bis zu mehreren hundert Quantenbits dar. „Nun müssen wir noch zeigen, dass wir die Atome wirklich individuell manipulieren können – eine Voraussetzung dafür, um Quantenbits kodieren und auslesen zu können. Die ersten Experimente hierzu führen wir gerade durch“, erklärt Dr. Kuhr.

Kalte Quantengase in optischen Gittern eignen sich aber nicht nur für Anwendungen in zukünftigen Quantencomputern, sondern auch als Quantensimulatoren für Festkörper. Dabei spielen die Atome im Lichtgitter die Rolle der Elektronen im Kristallgitter. Untersuchungen dieser Art können zu einem tieferen Verständnis ungewöhnlicher magnetischer und elektrischer Phänomene wie etwa der Hochtemperatursupraleitung führen und könnten die Entwicklung von Materialien mit maßgeschneiderten Eigenschaften ermöglichen. Olivia Meyer-Streng

Originalveröffentlichung:
Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel Bloch and Stefan Kuhr,
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
Nature, 18. August 2010, DOI 10.1038/nature09378
Kontakt:
Dr. Stefan Kuhr Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße
85748 Garching b. München
Tel.: +49 89 32905 738
E-Mail: stefan.kuhr@mpq.mpg.de
Prof. Dr. Immanuel Bloch
Lehrstuhl für Physik, LMU München Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Tel.: +49 89 32905 138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
20.08.2018 | Österreichische Akademie der Wissenschaften

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics