Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quantensimulator für komplexe elektronische Materialien

05.12.2008
Forscher simulieren komplexe elektronische Isolatoren mit ultrakalten Atomen in künstlichen Kristallen aus Licht.

Die Entwicklung neuer komplexer Materialien mit maßgeschneiderten Eigenschaften stellt eine der größten Herausforderungen in der modernen Quantenphysik dar. Bereits 1982 formulierte der amerikanische Nobelpreisträger Richard P. Feynman daher die Idee, die Eigenschaften komplexer Systeme mit Hilfe von Quantensimulatoren zu untersuchen, d.h. die Materialien mit anderen, künstlichen aber genau kontrollierbaren Quantensystemen zu simulieren.


Künstlerische Darstellung eines fermionischen Mott-Isolators. Aufgrund der dominanten abstoßenden Wechselwirkung ist jeder Gitterplatz mit genau einem Atom besetzt. Die Farben Rot und Grün symbolisieren verschiedene Spinzustände.
Universität Mainz

In der jüngsten Ausgabe der Zeitschrift Science berichtet ein Wissenschaftlerteam unter Leitung von Prof. Immanuel Bloch Direktor am Max-Planck-Institut für Quantenoptik (MPQ) und Ordinarius an der Johannes-Gutenberg-Universität in Mainz über ein neues Verfahren, um das Verhalten der Elektronen in einem Festkörperkristall mit Hilfe von ultrakalten Atomen zu simulieren. Die Atome sind dabei in einem künstlichen Lichtkristall, einem sogenannten optischen Gitter, gefangen, welches durch die Überlagerung mehrerer Laserstrahlen gebildet wird. Den Forschern aus Mainz, Köln und Jülich gelang es, in einem solchen System eines der spektakulärsten elektronischen Phänomene zu simulieren: Ein Metall kann schlagartig seine Leitfähigkeit verlieren, wenn die Wechselwirkung zwischen den Elektronen zu stark wird. Der resultierende sogenannte "Mott-Isolator" ist eines der wichtigsten Beispiele eines stark wechselwirkenden Systems in der Festkörperphysik. Es wird vermutet, dass dieses Phänomen in engem Zusammenhang zur Hochtemperatursupraleitung steht, die technisch interessant und vielversprechend, aber bisher noch schlecht verstanden ist. Zusätzlich bildet dieses System einen idealen Ausgangspunkt für die Untersuchung des magnetischen Verhaltens modernen Festkörpermaterialien.

"Fermionische Atome in einem optischen Gitter eignen sich nahezu perfekt dafür, das Verhalten von Elektronen in Festkörpern zu simulieren, da sie ein flexibles und sehr gut kontrollierbares Modell-System darstellen", erklärt Ulrich Schneider von der Universität Mainz. Die ablaufenden Prozesse in einem komplexen Material und in Hochtemperatursupraleitern direkt zu untersuchen, erweist sich im Vergleich dazu als äußerst schwierig, da in einem Festkörper unvermeidbare Störstellen und eine Vielzahl von miteinander konkurrierenden Wechselwirkungen auftreten. "In einem realen Festkörper ist es sehr schwierig die Auswirkungen bestimmter Wechselwirkungen zu isolieren und festzustellen, ob die Abstoßung zwischen den Elektronen allein die Hochtemperatursupraleitung erklären könnte", erläutert Prof. Bloch.

Im Experiment werden nun Kalium-Atome zuerst auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt und anschließend in ein optisches Gitter geladen, welches durch die Überlagerung von mehreren Laserstrahlen gebildet wird. Dabei ordnen sich die Atome in den Knoten der stehenden Laserwelle an und das Lichtfeld wirkt auf die Teilchen wie ein regelmäßiger Kristall aus einigen hunderttausend einzelnen Mikrofallen aus Licht. Im Simulator übernehmen die Atome die Rolle der Elektronen in einem echten Festkörperkristall, während das Kristallgitter, welches in einem Festkörper aus den Atomrümpfen besteht, durch die überlagerten Laserstrahlen gebildet wird.

Die Versuchsanordnung in Mainz ermöglichte es den Physikern die Dichte der Atome und die Stärke der abstoßenden Wechselwirkung im optischen Gitter unabhängig voneinander einzustellen. Dadurch war es möglich, gezielt zwischen metallischen und isolierenden Zuständen hin- und herzuschalten. Insbesondere gelang es, die Existenz des Mott-Isolators in diesem System direkt nachweisen: "Im Gegensatz zu metallischen Zuständen ändert sich die Dichte des Mott-Isolators bei steigendem Druck nicht, da die abstoßenden Kräfte zwischen den Atomen dafür sorgen, dass sich auf jedem Gitterplatz jeweils nur genau ein Atom befindet," betont Prof. Bloch.

Die Beobachtung des fermionischen Mott-Isolators in einem optischen Gitter eröffnet neue Möglichkeiten, stark korrelierte Zustände und die damit zusammenhängenden Phänomene zu simulieren und zu untersuchen. Dafür spricht auch die ausgezeichnete Übereinstimmung der Messdaten mit den theoretischen Berechnungen, die in Köln und Jülich mit Hilfe des Jülicher Supercomputers JUGENE auf der Basis moderner Festkörpertheorie durchgeführt wurden. [I.B.]

Originalveröffentlichung:
U. Schneider, L. Hackermüller, S. Will, Th. Best, and I. Bloch, T.A. Costi,
R.W. Helmes, D. Rasch, and A. Rosch
"Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice"

Science, 5. Dezember 2008

Kontakt:

Prof. Dr. Immanuel Bloch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
D-85748 Garching
Tel.: (+ 49 89) 32905 - 238
Fax: (+ 49 89) 32905 - 760
E-Mail: immanuel.bloch[a]mpq.mpg.de
Johannes Gutenberg-Universität Mainz
Staudingerweg 7
D 55128 Mainz
Tel.: (+49 6131) 39-26234 / 22279
Fax: (+49 6131) 39-25179
E-Mail: Bloch[a]Uni-Mainz.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de
http://www.quantum.physik.uni-mainz.de/bec
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics