Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation: Magnetismus besser verstehen

20.11.2015

Heidelberger Physiker imitieren mit ultrakalten Atomen das Verhalten von Elektronen in einem Festkörper

Einen neuen Ansatz zur Erforschung des Phänomens Magnetismus haben Wissenschaftler der Universität Heidelberg entwickelt. Mithilfe von ultrakalten Atomen nahe dem absoluten Nullpunkt haben sie ein Modell präpariert, mit dem das Verhalten von Elektronen in einem Festkörper simuliert und somit magnetische Eigenschaften untersucht werden können.


Atome (dargestellt in grün und blau) sind in einer Falle aus Laserlicht (rot) gefangen, in welcher sie sich nur entlang einer Raumrichtung bewegen können. Die Atome können entweder nach oben (grün), oder nach unten (blau) ausgerichtet sein, ähnlich der Nadel in einem Kompass. Wenn die Atome nicht miteinander wechselwirken, können sie sich frei in der Falle bewegen (oberes Bild), dabei ist keine Ordnung zu erkennen. Bei starker Abstoßung zwischen den Atomen (unteres Bild), ordnen sie sich selbstständig in der Falle an und zeigen abwechselnd noch oben und nach unten.

Die Erkenntnisse der Forscher um Prof. Dr. Selim Jochim vom Physikalischen Institut sollen zu einem besseren Verständnis fundamentaler Prozesse in Festkörpern beitragen und damit langfristig die Entwicklung neuartiger Materialien ermöglichen. Die Forschungsergebnisse dieser Quantensimulation, die gemeinsam mit Physikern aus Hannover und Lund (Schweden) gewonnen wurden, sind in der Fachzeitschrift „Physical Review Letters“ erschienen.

Magnetismus ist bereits seit mehr als 2.000 Jahren bekannt und wurde schon früh etwa für die Entwicklung des Kompass’ genutzt, dessen Nadeln sich am Magnetfeld der Erde ausrichten. Trotzdem konnten die mikroskopischen Ursachen von Magnetismus erst nach der Entwicklung der Quantenmechanik zu Beginn des 20. Jahrhunderts verstanden werden.

Zu den wichtigsten Erkenntnissen gehörte, dass Elektronen sich in einem Festkörper wie winzige Kompassnadeln verhalten, die sich an einem äußeren Magnetfeld ausrichten und sich außerdem gegenseitig beeinflussen.

Die magnetischen Eigenschaften eines Festkörpers hängen davon ab, wie sich in ihnen benachbarte Elektronen relativ zueinander ausrichten. Bei ferromagnetischen Werkstoffen wie zum Beispiel Eisen zeigen alle Elektronen in die gleiche Richtung. Beim sogenannten Antiferromagnetismus zeigen benachbarte Elektronen in jeweils entgegengesetzte Richtungen.

Für ihre Quantensimulation haben die Heidelberger Physiker nur sehr wenige, nämlich maximal vier Atome verwendet. „Das exakte Präparieren einer so kleinen Anzahl an Atomen ist eine große technische Herausforderung. Es erlaubt uns jedoch, den Zustand der Atome sehr präzise zu kontrollieren“, erläutert Simon Murmann, der der Arbeitsgruppe von Prof. Jochim angehört und sich in seiner gerade abgeschlossenen Doktorarbeit mit dieser Thematik befasst hat.

Die Atome befinden sich dabei in einer Falle aus Laserlicht, die nur die Bewegung in eine Raumrichtung erlaubt. Sie unterliegen ähnlichen fundamentalen Gesetzmäßigkeiten wie Elektronen in einem Festkörper, jedoch können die Physiker die Wechselwirkung zwischen den Atomen präzise kontrollieren. „Anfänglich besteht keine Wechselwirkung zwischen den Atomen.

In diesem Zustand können sie sich ohne Ordnung in der Falle frei bewegen. Wenn wir jedoch eine größere Abstoßung zwischen den Atomen einstellen, kommen die Atome nicht mehr aneinander vorbei und ordnen sich in einer Kette an. In dieser Kette zeigen die Atome immer abwechselnd nach oben und nach unten. Somit wird ein antiferromagnetischer Zustand herbeigeführt“, sagt der Heidelberger Wissenschaftler.

Diese Beobachtung ist für die Forscher von besonderem Interesse, weil Antiferromagnetismus mit physikalischen Phänomenen in Verbindung gebracht wird, die weitreichende Anwendungen ermöglichen könnten.

„So wurde Supraleitung, also der verlustfreie Transport von elektrischen Strömen, bei vergleichsweise hohen Temperaturen von lediglich minus 135 Grad Celsius in antiferromagnetischen Materialien beobachtet“, betont Selim Jochim. „Mit unseren Experimenten wollen wir zum Verständnis fundamentaler Prozesse in Festkörpern beitragen. Eine Vision in diesem Zusammenhang ist die Entwicklung neuer Materialien, die auch bei Raumtemperatur supraleitend bleiben.“

Für ihre Veröffentlichung in den „Physical Review Letters“ erhielten die Heidelberger Wissenschaftler die begehrte „Editors‘ Suggestion“, die Auszeichnung als Empfehlung der Redaktion.

Originalpublikation:
S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M. Reimann, L. Santos, T. Lompe, S. Jochim: Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters (published online on 19 November 2015), doi: 10.1103/PhysRevLett.115.215301

Kontakt:
Prof. Dr. Selim Jochim
Physikalisches Institut
Zentrum für Quantendynamik
Tel. ++49 6221 54-19472
jochim@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Grabengasse 1
69117 Heidelberg
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://ultracold.physi.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics