Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysikalisch gekoppelte Diamanten

10.04.2017

Atomare Fehler in Diamanten können als Quantenspeicher verwendet werden. An der TU Wien gelang es nun erstmals, Defekte unterschiedlicher Diamanten quantenphysikalisch zu koppeln.

Diamanten mit winzigen Fehlern könnten für die Zukunft der Quantentechnologie eine große Rolle spielen. An der TU Wien werden schon seit längerer Zeit die Quanteneigenschaften solcher Diamanten untersucht, nun gelang es erstmals, die speziellen Defekte in zwei solchen Diamanten miteinander zu koppeln.


Zwei schwarze Diamanten auf einem supraleitenden Chip (12x4mm). Die Geschwungene Linie ist ein Resonator, der die beiden Diamanten koppelt.

TU Wien


Das Team: Johannes Majer, Stefan Nevacsil, Noomi Peterschofsky, Thomas Astner, Andreas Angerer (v.l.n.r)

TU Wien

Das ist eine wichtige Voraussetzung für die Entwicklung neuer Anwendungen – von hochsensiblen Sensoren bis hin zu Schaltungen für Quantencomputer. Publiziert wurde die Arbeit nun im angesehenen Fachjournal „Physical Review Letters“ und sogar als „Editor’s Suggestion“ ausgewählt.

Auf der Suche nach dem passenden Quantensystem

„Quantenzustände sind leider sehr fragil und zerfallen sehr schnell“, erklärt Johannes Majer, Leiter der Hybrid Quantum-Forschungsgruppe am Atominstitut der TU Wien. Daher wird intensiv daran geforscht, Quantensysteme zu finden, die sich für technologische Anwendungen nutzen lassen. Zwar gibt es einige vielversprechende Kandidaten mit speziellen Vorteilen, aber bis heute hat man kein System, das alle Anforderungen gleichzeitig erfüllt.

„Ein möglicher Kandidat für die Realisierung eines Quantencomputers sind ganz spezielle Defekte in Diamanten“, sagt Johannes Majer. Ein reiner Diamant besteht ausschließlich aus Kohlenstoffatomen. Er kann allerdings passieren, dass an manchen Stellen im Diamant stattdessen ein Stickstoffatom sitzt und an einer benachbarten Stelle im atomaren Gitter der Diamantstruktur überhaupt kein Atom vorhanden ist – man spricht von einem „Loch“.

Dieser Defekt aus Stickstoffatom und Loch bildet ein Quantensystem, dessen Zustände sehr langlebig sind, daher eignen sich Diamanten mit solchen Fehlern sehr gut für Quanten-Experimente.

Auf die Kopplung kommt es an

Eine wichtige Voraussetzung für viele quantentechnologische Anwendungen ist es allerdings, solche Quantensysteme miteinander koppeln zu können. Und das war bei den Diamant-Systemen bisher kaum möglich. „Die Wechselwirkung zwischen zwei solchen Stickstoff-Loch-Defekten ist extrem schwach und hat nur eine Reichweite von etwa zehn Nanometern“, sagt Majer.

Nun gelang dieses Kunststück allerdings mit Hilfe eines supraleitenden Quantenchips, in dem Mikrowellenstrahlung erzeugt wird. Schon in den vergangenen Jahren untersuchte das Team der TU Wien, wie man die Diamanten mit Hilfe von Mikrowellen manipulieren kann: „Billionen von Stickstoff-Loch-Defekten im Diamanten werden kollektiv an ein Mikrowellenfeld gekoppelt“, sagt Johannes Majer. „Damit kann man den Quantenzustand der Diamanten manipulieren und auslesen.“

Nun ist der entscheidende nächste Schritt geglückt: Dem Team ist es gelungen, zwei verschiedene Diamanten so an beiden Enden eines Chips anzukoppeln, dass eine Wechselwirkung zwischen den beiden Diamanten entsteht. „Diese Wechselwirkung wird vom Mikrowellen-Resonator im Chip dazwischen vermittelt, der Resonator hat damit eine ähnliche Funktion wie ein Datenbus in einem herkömmlichen Computer“, sagt Johannes Majer.

Die Kopplung zwischen den beiden Diamanten lässt sich gezielt ein- und ausschalten: „Die beiden Diamanten sind um einen bestimmten Winkel gegeneinander verdreht“, berichtet Thomas Astner, der Erstautor der aktuellen Arbeit. „Außen legt man ein Magnetfeld an – und seine Richtung ist entscheidend: Wenn das Magnetfeld mit beiden Diamanten denselben Winkel einschließt, kann man sie quantenphysikalisch koppeln. Bei anderen Magnetfeldrichtungen kann man die einzelnen Diamanten ohne Kopplung untersuchen.“ Die ersten Schritte des Experimentes wurden von Noomi Peterschofsky im Rahmen ihrer Bachelorarbeit unternommen. Danach gelang es Thomas Astner und Stefan Nevlacsil während ihrer Masterarbeit, die Kopplung der Diamanten experimentell nachzuweisen.

Originalpublikation: T. Astner et al., Phys. Rev. Lett. 118, 140502
https://doi.org/10.1103/PhysRevLett.118.140502

Rückfragehinweis:
Dr. Johannes Majer
Atominstitut
Technische Universität Wien
Stadionalle 2, 1020 Wien
T: +43-699-10253808
johannes.majer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics