Quantenphysik macht sicheres Cloud Computing möglich

Darstellung von verschiedenen verschränkten Zuständen, die für „blinde“ Quantenrechnungen genutzt werden können. Illustration: Equinox Graphics<br>

Sie zeigen in der aktuellen Ausgabe von „Science“, dass Quanteneffekte absolut sicheres Cloud Computing ermöglichen. In einem Experiment gelang es, einen Quantencomputer so zu konstruieren, dass alle Ergebnisse der Daten und Rechnungen dem Computer selbst verborgen blieben.

Quantencomputer haben gegenüber klassischen Computern einen bedeutenden Vorteil: schnellere Rechnungen, die auf Quanteneffekten beruhen. Aufgrund Ihrer Komplexität existieren sie bisher nur als Grundlagenexperimente wie im Labor der Fakultät für Physik der Universität Wien. Daher ist es naheliegend, dass diese Technik zukünftig zunächst nur in wenigen spezialisierten Rechenzentren zur Verfügung stehen wird – ähnlich wie bei heutigen Großrechnern.

Auslagerung in die „Rechnerwolke“

Diese Strategie folgt dem aktuellen Trend des Cloud Computing, bei dem IT-Leistungen werden in die „Rechnerwolke“ ausgelagert werden. Nutzer könnten von außerhalb Anfragen an einen Quantencomputer stellen und Quantenrechnungen durchführen. Das neue Cloud Computing hat gegenüber derzeitigen Lösungen einen entscheidenden Vorteil, der nur durch Quanteneffekte erreicht werden kann: Es ist absolut sicher.
Code oder Telefonbuch?

Wiener ForscherInnen haben in Kooperation mit internationalen Forschungsinstituten erstmals diese absolute Sicherheit der Daten in einem Grundlagenexperiment realisiert. Dabei führt ein Quantencomputer Rechnungen durch, kann aber selbst nicht herausfinden, welche es sind. „Der Quantenrechner kann beispielsweise nicht unterscheiden, ob er gerade einen Code entschlüsselt, oder einen Eintrag in einem Telefonbuch sucht“, erklärt Stefanie Barz, Hauptautorin der soeben in „Science“ veröffentlichten Studie.
„Blind“ errechnet

Dies könnte in Zukunft folgendermaßen funktionieren: Ein Nutzer präpariert Qubits – die kleinsten Einheiten des Quantencomputers – in einem nur ihm bekannten Zustand und sendet diese zum Quantencomputer. Dieser verschränkt die Qubits nach einem bestimmten Schema. Die Quantenrechnungen werden nun durch Messungen realisiert. Dazu schickt der Nutzer verschiedene Messanweisungen an den Quantencomputer.

Diese Anweisungen sind an den Zustand der Qubits angepasst und ergeben nur einen Sinn, wenn auch der Zustand der Qubits bekannt ist. Da der Quantencomputer diesen jedoch nicht kennt, sind für ihn die Rechnungen eine unzusammenhängende Abfolge an Operationen. Daher kann er zu keinem Zeitpunkt Rückschlüsse ziehen, welche Rechnung er gerade durchführt – er rechnet „blind“. Am Ende der Rechnung werden Ergebnisse an den Nutzer zurückgesendet. „Der Nutzer kann als einziger die Ergebnisse interpretieren und nutzen, da nur er die Ausgangszustände der Qubits kennt“, erklärt Barz. Beim Wiener Experiment wurden einzelne Lichtteilchen (Photonen) als Qubits verwendet. Deren Polarisation, die Schwingungsebene des Lichts, ist die Grundlage für das photonische Qubit, und Photonen sind perfekt geeignet, weil sie ideale Informationsträger sind und über weite Distanzen gesendet werden können.

Internationale Forschungskooperation

Das Projekt ist eine internationale Koperation von ForscherInnen des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien, des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften, der University of Edinburgh, des Institute for Quantum Computing (University of Waterloo), des Centre for Quantum Technologies (National University of Singapore) und dem University College Dublin.

Publikation
Demonstration of Blind Quantum Computing. Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph Fitzsimons, Anton Zeilinger, Philip Walther
DOI: 10.1126/science.1214707

Links
Abstract zur Publikation: http://www.sciencemag.org/content/335/6066/303
Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/

Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at

Wissenschaftlicher Kontakt
Mag. Stefanie Barz
Vienna Center for Quantum Science and Technology
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 06
stefanie.barz@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Media Contact

Alexander Dworzak Universität Wien

Weitere Informationen:

http://www.univie.ac.at

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer