Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysik und Kurzzeitlaser

15.04.2010
Die ETH Zürich erhält den Zuschlag für zwei neue Nationale Forschungsschwerpunkte. Professor Klaus Ensslin wird das Programm "Quantum Science and Technology" leiten. Professorin Ursula Keller bekommt grünes Licht für ein Forschungsprogramm mit der Universität Bern zum Thema "Molecular Ultrafast Sciences and Technology". Insgesamt fördert der Bund die beiden Programme mit 34 Mio. Franken.

Insgesamt acht neue Nationale Forschungsschwerpunkte (NFS) hat Bundesrat Didier Burkhalter bewilligt. Die NFS sind ein Förderprogramm des Schweizerischen Nationalfonds welches langfristig angelegte, strategische Forschungsvorhaben unterstützt und mitfinanziert. Das seit 2001 bestehende Programm umfasst zurzeit 20 NFS.

Vision Quantencomputing

Was folgt auf die heutige Computertechnologie, die durch die anhaltende Verkleinerung der Elektronik irgendwann einmal an ihre physikalischen Grenzen stösst und auch wegen des steigenden Energiehungers von Grossrechenzentren nach Alternativen ruft? - Weltweit setzen Forscherinnen und Forscher ihre Hoffnungen auf neuartige Computertechnologien. Ein wichtiger Ansatz basiert auf den Gesetzen der Quantenphysik. Dieser Forschungszweig ist an der ETH Zürich von strategischer Bedeutung. So wurden in den vergangenen Jahren gezielt Investitionen getätigt, um neue Professuren zu besetzen und den Ausbau der Quantenwissenschaften voranzutreiben. Zudem: Im neuen Nanotechnologielabor NETL, das ab dem nächsten Jahr von der IBM und der ETH Zürich gemeinsam betrieben wird, ist "Quantum Technology" eines der fünf zentralen wissenschaftlichen Themen.

Professor Klaus Ensslin vom Labor für Festkörperphysik wird das NFS "Quantum Science and Technology" leiten. Das Programm, an dem verschiedene Schweizer Universitäten beteiligt sind, hat eine Laufzeit von vier Jahren (2011-2014) und wird vom Nationalfonds mit 17 Mio. Franken unterstützt. Die nationale Initiative ist optimal eingebettet in die strategische Planung der ETH Zürich. Dazu Roland Siegwart, Vizepräsident Forschung und Wirtschaftsbeziehungen: "Die Initiative kommt zu einem idealen Zeitpunkt, um diesem zukunftsträchtigen Forschungsgebiet Schub zu verleihen. Sie wird uns in die Lage versetzen, unsere und die starke Stellung der Schweiz insgesamt, im Bereich der Quantenwissenschaften weiter auszubauen."

Elektronen, Atome und Moleküle in Aktion beobachten

Der NFS mit dem Titel "Molecular Ultrafast Science and Technology" (MUST) erhält ebenfalls rund 17 Mio. Franken für die Jahre 2010 - 2013. Das Co-Direktorium teilen sich Professorin Ursula Keller vom Institut für Quantenelektronik der ETH Zürich und Professor Thomas Feurer vom Institut für Angewandte Physik der Universität Bern, "Leading House" ist die ETH Zürich. Insgesamt arbeiten 15 Schweizer Forschungsgruppen aus unterschiedlichen Disziplinen im Rahmen von MUST zusammen.

Was MUST besonders interessiert, sind zwei Aspekte: strukturelle Änderungen von Molekülen, ihr Zusammenhang mit bestimmten Funktionen und der Transport von mikroskopischen Energieeinheiten - im Extremfall ein einziges Elektron. Diese Grundlagenforschung will Antworten liefern auf eine Reihe grosser Fragen, die sich unserer Gesellschaft stellen. So sucht man mit wachsender Dringlichkeit nach Wegen, um alternative Energiequellen zu erschliessen, neue Verfahren zur Herstellung komplexer Medikamente zu finden oder um elektronische Bauteile, wie etwa Prozessoren oder Speicherchips in Computern, noch schneller zu machen. Viele dieser Forschungsarbeiten basieren auf modernsten ultraschnellen Laserquellen, die auch für andere Anwendungen benutzt werden können: Materialbearbeitung, Laser gestützte Blitzableiter, Laser-Nanochirurgie oder Schadstoffidentifikation.

Auch im Bereich der Kurzzeitlaserphysik hat die ETH Zürich in der jüngsten Vergangenheit aus eigenen Mitteln die Forschungstätigkeiten ausgebaut - unter anderem hat sie 2009 ein neues Lasersystem installiert, das eine zeitaufgelöste Photoelektronen-Spektroskopie auf atomarer Ebene mit Attosekundengenauigkeit (Eine Attosekunde ist ein Milliardstel eines milliardsten Teiles einer Sekunde!) erlaubt.

Claudia Naegeli | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der Zeit atomarer Vorgänge auf der Spur
22.02.2019 | Max-Planck-Institut für Kernphysik

nachricht Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst
22.02.2019 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mobile World Congress: Bundesamt für Strahlenschutz rät zu Handys mit geringem SAR-Wert

22.02.2019 | Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Zeit atomarer Vorgänge auf der Spur

22.02.2019 | Physik Astronomie

Wie Korallenlarven sesshaft werden

22.02.2019 | Biowissenschaften Chemie

Ökologische Holz-Hybridbauweisen für den Geschossbau

22.02.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics