Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysik: Angekündigter Zufall

28.06.2010
Eine neuartige Quelle von verschränkten Lichtteilchen haben Wiener PhysikerInnen um Philip Walther und Anton Zeilinger von der Fakultät für Physik der Universität Wien und vom Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften entwickelt. Diese erlaubt es erstmals nachzuweisen, dass ein verschränkter Zustand vorliegt ohne diesen zu messen. Sie publizieren dazu in der aktuellen Ausgabe des Fachjournals "Nature Photonics".

Zufällige Erzeugung von verschränkten Lichtteilchen

Bisher hatte die Standardquelle für verschränkte Photonen einen entscheidenden Nachteil: Der Emissionszeitpunkt war unbekannt und es ließ sich damit nicht feststellen, wann die Teilchen die Quelle verlassen. Diese spontane Emission der Teilchenpaare führte zu diversen Problemen bei experimentellen Realisierungen. Möchte man z.B. einen Quantencomputer auf der Basis von Photonen bauen, hieße das, dass man nicht genau weiß, wann die sogenannten Quantenbits, in diesem Fall in Form von Photonen, vorhanden sind. In der Praxis bedeutet dies, dass nach jedem vermuteten Rechenschritt Photonen gemessen werden müssen, um festzustellen, ob dieser erfolgreich war.

Eine Messung in der Quantenmechanik heißt im Allgemeinen auch eine Zerstörung des quantenmechanischen Zustandes – die Teilchen können für keine weitere Quantenrechnung verwendet werden. Die Anwendbarkeit eines optischen Quantencomputers war dadurch bisher stark begrenzt.

Signalisierte Emission von Verschränkung

Die von Wiener ForscherInnen realisierte Quelle von verschränkten Photonenpaaren, bei der die Emission der Paare angekündigt wird, macht eine Messung zur Anwesenheit der Teilchen überflüssig und ermöglicht eine Erweiterung des derzeitigen optischen Quantencomputers. Das Konzept dieser Quelle basiert auf zusätzlichen Hilfsteilchen, deren Messung eine Aussage über den Zustand der verbleibenden Teilchen ermöglicht. Im konkreten Fall des Wiener Experiments präparieren die ForscherInnen sechs Photonen in einem speziellen quantenmechanischen Zustand. Misst man nun vier dieser Photonen in einer festgelegten Konfiguration, so befinden sich die übrigen beiden Photonen in einem verschränkten Zustand. "Vier gleichzeitige Detektorklicks der vier Hilfsphotonen signalisieren also die Aussendung eines Paares verschränkter Photonen", erklärt die am Experiment beteiligte Physikerin Stefanie Barz.

Für die Realisierung von auf Verschränkung basierenden Technologien, wie optischen Quantennetzwerken und photonischen Quantencomputern, ist diese wissenschaftliche Arbeit der Wiener PhysikerInnen ein wichtiger Schritt.

Verschränkung in der Quantenmechanik

Verschränkung ist eine Eigenschaft der Quantenmechanik, die kaum mit dem alltäglichen, makroskopischen Verständnis der Welt vereinbar ist und kein Gegenstück in der klassischen Physik besitzt. Sind zwei Lichtteilchen (Photonen) miteinander verschränkt, so bleiben sie über beliebige Distanzen verbunden. Führt man eine Messung, z.B. des Polarisationszustandes, an einem der beiden Teilchen durch, so ändert sich auf "spukhafte Weise" auch der Zustand des anderen Teilchens.

Neben der fundamentalen Bedeutung von verschränkten Systemen, liefern diese auch vollkommen neue Ansätze zur Informationsverarbeitung und zur abhörsicheren Kommunikation unter Ausnutzung von quantenmechanischen Prinzipien. Verschränkte Photonen bilden daher seit vielen Jahren einen Ausgangspunkt für zahlreiche Grundlagenexperimente zur Quantenmechanik und sind die Basis für experimentelle Realisierungen von Konzepten zur Quanteninformationsverarbeitung. So wurden bereits einfache Quantencomputer realisiert, die die Gesetze der Quantenmechanik ausnutzen, um eine schnellere und sicherere Informationsverarbeitung zu ermöglichen.

Publikation in "Nature Photonics":

Heralded generation of entangled photon pairs. Stefanie Barz, Gunther Cronenberg, Anton Zeilinger, Philip Walther. 27. Juni 2010. DOI 10.1038/NPHOTON.2010.156

Kontakt
Mag. Stefanie Barz
Quantum Optics, Quantum Nanophysics, Quantum Information
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43 1 4277-512 06
stefanie.barz@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.nature.com/nphoton/
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics