Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmechanik: Verschränkungen in ultrakalten Atomwolken

27.06.2018

Heidelberger Forscher weisen nicht-lokale Korrelationen in Wolken von Rubidium-Atomen nach

Als verschränkt oder auch quantenkorreliert wird der Zustand eines Systems bezeichnet, bei dem sich zwei oder mehr Teilchen nicht mehr als Kombination jeweils unabhängiger Zustände beschreiben lassen, sondern nur durch einen gemeinsamen Zustand.


Foto: Philipp Kunkel, SynQS

Schematische Darstellung der experimentellen Implementierung: Eine zigarrenförmige Wolke von Rubidium-Atomen (blaue Punkte) wird auf ultrakalte Temperaturen gekühlt. Durch Stöße zwischen den Atomen bauen sich Quantenkorrelationen, auch Verschränkung genannt, auf (gelbe Verbindungen). Die Atomwolke wird schließlich mithilfe von Laserlicht auf eine Kamera abgebildet. Durch die hohe räumliche Auflösung der Kamera können Korrelationen zwischen verschiedenen Teilen (A und B) des Kondensats, und insbesondere deren quantenmechanischer Charakter, nachgewiesen werden.

Wissenschaftlern am Kirchhoff-Institut für Physik der Universität Heidelberg ist es nun gelungen, sogenannte nichtlokale Quantenkorrelationen zwischen ultrakalten Wolken von Rubidium-Atomen nachzuweisen. Damit konnten die Forscher um Prof. Dr. Markus Oberthaler und Prof. Dr. Thomas Gasenzer wichtige neue Erkenntnisse zur Charakterisierung von quantenmechanischen Vielteilchensystemen gewinnen.

Die Theorie der Quantenmechanik sagt Korrelationen vorher, die der Intuition zuwiderlaufen. Solche Quantenkorrelationen scheinen im Widerspruch zu stehen zur Heisenbergschen Unschärferelation: Sie besagt, dass zwei Eigenschaften eines Objekts wie Ort und Geschwindigkeit nie gleichzeitig exakt bestimmt sein können.

In quantenmechanischen Systemen lassen sich jedoch zwei Teilchen so präparieren, dass es die Ortsbestimmung von Teilchen eins möglich macht, die Position des zweiten exakt vorherzusagen. Genauso erlaubt die Geschwindigkeitsmessung des einen Teilchens die Vorhersage der Geschwindigkeit des anderen.

„In diesem Fall müssen sowohl Ort als auch Geschwindigkeit von Teilchen zwei schon vor der Messung exakt bestimmt sein“, erläutert Prof. Oberthaler. „Das Messergebnis an Teilchen eins kann nicht sofort am Ort von Teilchen zwei vorliegen, wenn beide räumlich voneinander getrennt sind.“

Diese gleichzeitige Bestimmtheit von Ort und Geschwindigkeit ist aber durch die Unschärferelation eigentlich nicht möglich. Der scheinbare Widerspruch löst sich dadurch auf, dass in der quantenmechanischen Beschreibung nicht von zwei getrennten Objekten gesprochen werden kann, wenn diese korreliert, also verschränkt sind.

„Wenn wir nachweisen können, dass sich Messergebnisse verschiedener Beobachtungsgrößen in einem System durch Messungen an einem zweiten, entfernten System tatsächlich vorhersagen lassen, dann können wir diesen Nachweis verwenden, um auch eine Verschränkung zu belegen – und genau das haben wir in unserem Experiment gezeigt“, so der Erstautor der Studie, Philipp Kunkel.

In ihrem Experiment benutzten die Forscher eine Wolke von rund 11.000 Rubidium-Atomen, die sie auf extrem niedrige Temperaturen kühlten und mit Laserlicht in einer Vakuumkammer in der Schwebe hielten. Damit sollten jegliche Störeffekte wie zum Beispiel Stöße mit Luft-Molekülen ausgeschlossen werden.

Die Arbeit mit ultrakalten Atomen ist erforderlich, da Quanteneffekte erst bei sehr niedrigen Temperaturen nachweisbar werden. Unter diesen extremen Bedingungen ist es zudem möglich, vergleichbar zu Ort und Geschwindigkeit den internen Zustand der Teilchen, oftmals Spin genannt, zu messen. „So konnten wir den Spin in der einen Hälfte der Wolke durch eine Messung an der anderen Hälfte genauer vorhersagen, als es die lokale Unschärferelation erlauben würde“, erklärt Philipp Kunkel.

Die Charakterisierung von quantenmechanischen Vielteilchensystemen ist unter anderem von Bedeutung für künftige Anwendungen wie Quantencomputer oder die Quantenkommunikation. Die aktuellen Heidelberger Forschungsergebnisse wurden in „Science“ veröffentlicht.

Originalpublikation:
P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner, M.K. Oberthaler: Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science (published online 27 April 2018), doi: 10.1126/science.aao2254

Kontakt:
Prof. Dr. Markus Oberthaler
Kirchhoff-Institut für Physik
Telefon (06221) 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.kip.uni-heidelberg.de/synqs

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe
11.12.2018 | Technische Universität Wien

nachricht Neue Methode verpasst Mikroskop einen Auflösungsschub
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics