Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmagneten auf Wanderschaft

13.03.2013
LMU/MPQ-Wissenschaftler beobachten in einer Kette von ultrakalten Atomen die kohärente Ausbreitung von einzelnen quantenmagnetischen Störstellen.

Immer wieder entdecken Physiker Phänomene, die sie zunächst nicht erwartet hätten – etwa, dass manche Stoffe bei tiefen Temperaturen ihren elektrischen Widerstand fast vollständig verlieren, oder dass andere sogar bei überraschend hohen Temperaturen zu solchen Supraleitern werden.


Abb.1: Veranschaulichende Darstellung der Ausbreitung der Spin-Störung (rot) in einer Kette von Atomen, deren Spin anfänglich entgegengesetzt gerichtet ist.

Grafik: MPQ, Abt. Quanten-Vielteilchensysteme

Bislang waren es vor allem Theoretiker, die ungewöhnliche Eigenschaften mit eigens dafür entwickelten Modellen erklärten. Doch man kann nicht direkt nachschauen, wie der Ladungstransport in einem Festkörperkristall wirklich abläuft, denn dieser Prozess ereignet sich auf extrem kleinen Zeit- und Längenskalen. Ein Team um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor am MPQ) hat jetzt erstmals die kohärente Ausbreitung von einzelnen Spinanregungen in einem ultrakalten Quantengas aus stark korrelierten Atomen beobachtet (Nature Physics, Advance Online Publication, 24. Februar 2013).

Dies ist einer der elementaren Prozesse im Magnetismus von Quantensystemen. In enger Zusammenarbeit mit theoretischen Physikern der Ludwig-Maximilians-Universität und der Universität Genf konnten die Wissenschaftler auch zeigen, dass der Transport der Spin-Störung in schwächer korrelierten Systemen durch die Ausbildung von Quasiteilchen (sogenannten Polaronen) verlangsamt wird.

Festkörpereigenschaften wie Magnetismus, elektrische Leitfähigkeit oder Supraleitung sind durch das Verhalten der Elektronen in dem periodischen Kristallgitter bestimmt. Eine besondere Rolle spielt dabei der Eigendrehimpuls, der sogenannte Spin, der Elektronen. So führt man die Hochtemperatur-Supraleitung bestimmter Kupferverbindungen auf die Spin-Kopplung von stark korrelierten Elektronen zurück. Ultrakalte Atome in optischen Gittern sind ideale Systeme, um diese „quantenmagnetischen“ Phänomene unter kontrollierten experimentellen Bedingungen zu untersuchen.

Im vorliegenden Experiment kühlen die Wissenschaftler zunächst Rubidium-Atome auf eine Temperatur dicht oberhalb des absoluten Nullpunkts ab. Mit Hilfe von Lichtfeldern erreichen sie, dass sich die Atome nur noch entlang eindimensionaler, parallel verlaufender Röhren bewegen dürfen. Diesen Röhren wird eine stehende Laserwelle überlagert, so dass eine periodische Folge heller und dunkler Gebiete erzeugt wird – ein optisches Gitter, in dem auf jedem Gitterplatz genau ein Atom fest gehalten wird. Dieser perfekt geordnete Zustand wird nach dem britischen Physiker Sir Neville Mott als „Mott-Isolator“ bezeichnet. Auf diese Weise bildet sich schließlich eine Anordnung von parallel verlaufenden Ketten aus jeweils ca. fünfzehn Atomen aus.

Die Atome in dem optischen Gitter spielen die Rolle der Elektronen in dem Festkörpergitter, Genau wie diese sind sie durch einen Eigendrehimpuls, d.h. Spin, charakterisiert, jedoch können die Wissenschaftler auf den atomaren Spin, der sich (wie bei kleinen Magnetnadeln) in zwei entgegengesetzte Richtungen einstellen kann, direkt Einfluss nehmen. Anfangs sind alle Atome in dem Ensemble einheitlich ausgerichtet. Dann wird ein Atom in der Mitte jeder Kette zunächst mit einem Laserstrahl gezielt angesprochen und sein Spin wird durch Bestrahlen mit Mikrowellenpulsen umgeklappt. Nun verfolgen die Wissenschaftler, wie sich diese künstlich erzeugte Spin-Störung in dem eindimensionalen Gitter ausbreitet (siehe Abb. 1).

Mit Hilfe eines in der Gruppe entwickelten Abbildungsverfahrens, das einzelne Atome auf ihren Gitterplätzen mit hoher Auflösung sichtbar macht, wird der Ort der Störung nach unterschiedlichen Zeitabständen bestimmt, und zwar gleichzeitig für alle Ketten. Die daraus resultierenden Verteilungen weisen eine Struktur auf, wie sie aus der Interferenz kohärenter Wellen zu erwarten ist. „Die Ausbreitung der Spin-Störung führen wir auf den Mechanismus des „korrelierten Super-Austauschs“ zurück“, erklärt Dr. Christian Groß, Wissenschaftler am Experiment. „Wenn die Spin-Störung einen Platz nach rechts wandert, nimmt im Gegenzug das Nachbaratom dessen Platz ein. Da dieser Vorgang mit der gleichen Wahrscheinlichkeit gleichzeitig in der anderen Richtung stattfindet, kommt es zu der von uns beobachteten Interferenz. In einem klassischen System dagegen würde die Verteilung im Laufe der Zeit lediglich breiter werden. Wir haben damit den Beweis erbracht, dass sich die Spinwelle kohärent ausbreitet.“

In der Mott-Phase sind die Barrieren zwischen den Gitterplätzen so hoch, dass die Teilchen fest an ihre Plätze gebunden sind und lediglich der oben erwähnte korrelierte Superaustausch möglich ist. Wird die Gitterhöhe – d.h. die Intensität der Laserwelle – herunter gefahren, dann können die Teilchen unterhalb einer bestimmten Schwelle mit einer quantenmechanisch festgelegten Wahrscheinlichkeit zu ihren jeweiligen Nachbarplätzen hinüber „tunneln“. In dieser „suprafluiden Phase“ ist die Beweglichkeit der Atome eigentlich erhöht, allerdings wird die Ausbreitung der Störstelle – wie die Messungen zeigten – abgebremst. „Das liegt daran, dass die Tunnelprozesse die Wechselwirkung der Spin-Störung mit den Hintergrundatomen und deren Dynamik sehr viel komplexer machen“, erläutert Dr. Takeshi Fukuhara, der an dem Experiment als Postdoc forscht. „Im Endeffekt stößt die Spin-Störung unmittelbar benachbarte Teilchen von sich weg.“ Dadurch entsteht in dem „Bad“ aus Hintergrundatomen eine Vertiefung, die von der Störung mit geschleppt werden muss, wodurch diese schwerfälliger und auch langsamer wird. „Das ist so, wie wenn man sich auf dem Weg zur U-Bahn einen Weg durch einen Menschenmenge bahnen muss: auch das geht natürlich nur langsam, da man sich ständig aufs neue Platz schaffen, also ein „Loch“ mit sich ziehen muss“, führt Fukuhara aus. „Die in unserer Messung beobachtete Störstellenbewegung lässt sich mit der Entstehung von Quasiteilchen, den auch in der Festkörperphysik auftretenden Polaronen, erklären.“

Die hier beschriebenen Messungen sind unter zwei Aspekten von großer Bedeutung. Zum einen demonstrieren sie die herausragenden Kontrollmöglichkeiten von ultrakalten Quantensystemen, die die Grundlage für die Simulation von kollektiven Festkörperanregungen sind, insbesondere von quantenmagnetischen Phänomenen. Zum anderen geben sie einen direkten Einblick in die Prozesse, die dem Transport von elektrischen Ladungen und Störstellen in Festkörperkristallen zu Grunde liegen und letztendlich die makroskopisch beobachtbaren Eigenschaften von Stoffen festlegen. Olivia Meyer-Streng

Originalveröffentlichung:
Takeshi Fukuhara, Adrian Kantian, Manuel Endres, Marc Cheneau, Peter Schauß,
Sebastian Hild, David Bellem, Ulrich Schollwöck, Thierry Giamarchi, Christian Groß, Immanuel Bloch, und Stefan Kuhr
Quantum dynamics of a mobile spin impurity
Nature Physics, Advance Online Publication, 24. Februar 2013

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32 905 -713
E-Mail: christian.gross@mpq.mpg.de

Dr. Takeshi Fukuhara
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32 905 -677
E-Mail: takeshi.fukuhara@mpq.mpg.de

Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow, U.K.
G4 0NG
Tel.: +44 141 548 3364
E-Mail: stefan.kuhr@strath.ac.uk

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

nachricht Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
09.07.2020 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics