Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenlimitierte Messmethode für Nanosensoren

12.10.2009
Wissenschaftlerteam am Max-Planck-Institut für Quantenoptik gelingt es, optische Methoden auf Nanomechanische Objekte anzuwenden.

Neue Fertigungstechniken ermöglichen es, mechanische Bauelemente auf Siliziumchips herzustellen, die nur noch Nanometer (ein Millionstel mm) groß sind. Ihre Anwendung ist allerdings noch dadurch eingeschränkt, dass keine ausreichend genauen Messverfahren für diese winzigen Bauteile zur Verfügung stehen.


Schema des Experiments: Die Nanosaiten (gelb) treten in Wechselwirkung mit dem optischen Nahfeld, das aus dem Toroid-Glasresonator (violett) dringt. Nähert man eine einzelne Saite dem Mikroresonator an, so verringert sich dessen optische Resonanzfrequenz exponentiell.
MPQ

Einen grundsätzlich neuen Ansatz hat jetzt ein Team um Prof. Tobias Kippenberg (Leiter der Nachwuchsgruppe "Laboratory of Photonics and Quantum Measurements" am Max-Planck-Institut für Quantenoptik in Garching und Tenure Track Assistant Professor an der Eidgenössischen Technischen Hochschule Lausanne) und Prof. Jörg Kotthaus (Professor an der LMU München) am MPQ erfolgreich getestet (Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1425). Eine Schlüsselrolle darin spielen auf Siliziumchips gewachsene Glaszylinder mit einem Durchmesser von ca. 50 Mikrometern, die in ihrem Innern Licht für geraume Zeit speichern können. Wie die Wissenschaftler zeigten, können Nanooszillatoren mit dem aus dem Toroid dringenden optischen Nahfeld sowohl ausgelesen als auch zu Schwingungen angeregt werden.

Die Genauigkeit dieser Messungen ist nur durch die Quantenfluktuationen des Lichts limitiert. Bereits bei Raumtemperatur werden deshalb Empfindlichkeiten erreicht, die in der Größenodnung des quantenmechanischen Grundzustandsrauschens der Oszillatoren sind, d.h. dem Standard-Quantenlimit entsprechen. Die neue Messmethode ist somit für die Grundlagenforschung von großem Interesse. Aber auch Anwendungen wie der Nachweis einzelner Atome bzw. Ladungen oder auch die Massenspektrometrie können von den Messungen profitieren.

Nanomechanische Oszillatoren sind ideale Kandidaten, um die Quantengrenzen mechanischer Schwingungen experimentell zu testen. Darüber hinaus sind sie die Grundlage für eine Reihe von Präzisionsmessungen und ein fester Bestandteil in Magnetkraft- und Rasterkraftmikroskopen. In den vergangenen 10 Jahren wurde der Entwicklung empfindlicher Auslesetechniken für immer kleinere und dadurch sensitivere Oszillatoren eine hohe Aufmerksamkeit geschenkt. Optische Methoden erreichten hierbei die besten Werte, waren aber auf Objekte größer als die Wellenlänge beschränkt. Für nanoskalige Objekte anwendbare, elektronische Methoden erreichten bisher nur eingeschränkte Präzision.

Die MPQ und LMU-Physiker haben jetzt erstmals erfolgreich optische Methoden auf nanoskalige Oszillatoren angewandt. Dies ist so ohne weiteres nicht möglich, da es, sobald die Objekte kleiner als die Wellenlänge des Lichtes sind, zu Beugungsverlusten kommt. Im vorliegenden Experiment wird dieses Problem dadurch umgangen, dass im optischen Nahfeld gearbeitet wird. Schlüsselbaustein ist ein zylindrischer Resonator aus Glas mit einem Durchmesser von ca. 50 Mikrometern. Dieses Mikrotoroid kann Licht speichern, wenn dessen Wellenlänge hineinpasst, d.h. in einem ganzzahligen Verhältnis zum optischen Umfang des Resonators steht. Ein kleiner Teil des gespeicherten Lichts, das sogenannte Nahfeld, "leckt" aus dem Resonator heraus und dient als Messsonde für die Nanooszillatoren (s. Abbildung) - eine Anordnung parallel gespannter Siliziumnitrid- Saiten, die typischerweise 100 Nanometer mal 500 Nanometer dick und 15 bis 40 Mikrometer lang sind. (Nanosaiten und Mikrotoroide wurden in den Reinräumen von Prof. Kotthaus an der LMU und an der ETH Lausanne hergestellt.)

Bringt man die Nanoszillatoren in das Nahfeld, das sich einige Hundert Nanometer weit von der Oberfläche der Toroide erstreckt, so können sie mit dem Mikrotoroid wechselwirken. Die Nanooszillatoren wirken dabei auf das optische Nahfeld wie ein Dielektrikum, d.h. sie verändern lokal den Brechungsindex. Dies führt wiederum zu einer Verschiebung des optischen Umfangs und damit der Resonanzfrequenzen des Mikrotoroids.

Die Verschiebung der optischen Resonanzen durch die Nanooszillatoren ist hierbei so groß, dass allein deren Brownsche Bewegung einen starken, deutlich messbaren Einfluss hat und die Bewegung der Saiten mit hoher Empfindlichkeit gemessen werden kann. Die dabei erreichte Empfindlichkeit für Abstandsänderungen ist von der gleichen Größenordnung wie die quantenmechanisch bedingten Fluktuationen, die man für nanomechanische Oszillatoren beim absoluten Temperaturnullpunkt erwartet und welche dem sogenannten Standard-Quantenlimit für Abstandsmessungen entsprechen.

Die hohe Empfindlichkeit auf die Bewegung nanoskaliger Objekte sei allerdings nur ein Aspekt des neuen Verfahrens, betont Georg Anetsberger, der in der Gruppe von Prof. Kippenberg promoviert. Ebenso wichtig sei der erstmalige Nachweis, dass auch nanoskalige Objekte durch die Kraft von Photonen, den Strahlungsdruck, direkt beeinflusst, z.B. gekühlt in Schwingung versetzt werden können. "Wir beobachten, dass die Dipolkraft des optischen Nahfelds zu einer dynamischen Rückwirkung führt, welche die Nanosaiten zu kohärenten laserähnlichen Schwingungen anregt."

Die hier verwendete Methode lässt sich praktisch auf alle nanoskaligen mechanischen Oszillatoren anwenden, was deren Einsatz als hochempfindliche Sensoren, weiter verbessern könnte. Für Prof. Kippenberg zeigt sich daran wieder einmal die Vielseitigkeit der Mikrotoroide, die seit einigen Jahren im Zentrum seiner Forschung stehen. "Wir haben hier eine experimentelle Plattform entwickelt, die die Anwendungsmöglichkeiten nanomechanischer Bauelemente deutlich erweitern könnte. Zudem bietet sie eine Schnittstelle, an der Photonen und Phononen so optimiert miteinander wechselwirken, dass quantenmechanische Effekte bei Raumtemperatur messbar werden könnten."

[Olivia Meyer-Streng/Georg Anetsberger]

Originalveröffentlichung:
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M.Weig, J. P. Kotthaus und T. J. Kippenberg
Near-field cavity optomechanics with nanomechanical oscillators
Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1425
Kontakt:
Prof. Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
http://www.mpq.mpg.de/k-lab/
Georg Anetsberger
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 334
Fax: +49 - 89 / 32905 200
E-Mail: georg.anetsberger@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics