Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation: Wie man das Rauschen überlistet

29.03.2017

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird intensiv an Methoden der Quanten-Informationsübertragung gearbeitet. So könnte man abhörsichere Datenverbindungen herstellen oder vielleicht sogar eines Tages Quantencomputer miteinander verschalten.


Trotz störenden Rauschens kann man mit speziellen Tricks Quanten-Bits miteinander koppeln.

IQOQI/Harald Ritsch

Dazu muss es aber gelingen, die Information eines Quantensystems zuverlässig auf ein anderes zu übertragen – und das ist extrem schwierig. Gleichzeitig und unabhängig voneinander entwickelten nun zwei Forschungsteams, eines von der Universität Innsbruck und eines von der TU Wien, ein neuartiges Quanten-Kommunikationsprotokoll.

Es ermöglicht zuverlässige Quantenkommunikation sogar in Anwesenheit von störendem Rauschen. Die Grundidee beider Forschungsgruppen ist dieselbe: Ein zusätzliches Element am Anfang und am Ende der Leitung, ein sogenannter Quanten-Oszillator, soll störendes Rauschen in der Leitung unschädlich machen.

Zuverlässige Datenübertragung

Quantenkommunikations-Experimente gibt es schon lange. „Schon in den Neunzigerjahren wurde ein Quanten-Teleportations-Protokoll präsentiert, mit dem man den Zustand eines Quantensystems mit Hilfe von optischen Photonen auf ein anderes übertragen kann“, sagt Benoit Vermersch, Postdoc im Team von Prof. Peter Zoller an der Universität Innsbruck. Damit kann man riesige Distanzen überbrücken – allerdings nur wenn man in Kauf nimmt, dass die allermeisten Photonen verlorengehen und nur ein winziger Bruchteil von ihnen am Detektor ankommt.

„Uns ging es hingegen darum, einen Weg zu finden, wie man einen Quantenzustand zuverlässig von einem Ort zum anderen übertragen kann, ohne dafür mehrere Versuche zu benötigen“, erklärt Peter Rabl vom Atominstitut der TU Wien.

Besonders vielversprechende Elemente für künftige Quantentechnologien sind sogenannte „supraleitende Qbits“ - winzige Schaltkreise, die zwei verschiedene Zustände annehmen können. Im Gegensatz zu einem klassischen Lichtschalter, der immer entweder aus oder eingeschaltet ist, erlauben die Gesetze der Quantenphysik allerdings auch, dass ein solches Qbit eine beliebige Kombination dieser beiden Zustände annimmt, man spricht dann von einer Quanten-Überlagerung.

Um diese subtilen Quanten-Zustände von einem supraleitenden Qbit auf ein anderes zu übertragen, braucht man Photonen im Mikrowellenbereich, wie man sie auch heute bereits für klassische Signalübertragung verwendet. Eine zuverlässige Übertragung von Quanteninformation mit Mikrowellen galt bisher allerdings als unmöglich, weil das Rauschen der allgegenwärtigen Wärmestrahlung diese viel schwächeren Quantensignale komplett überlagert.

Neuartiges Übertragungsprotokoll

Die beiden Forschungsgruppen an der TU Wien und der Universität Innsbruck konnten nun allerdings zeigen, dass diese Einschränkung doch nicht so streng ist wie üblicherweise angenommen. In Zusammenarbeit mit Partnerteams aus Harvard und Yale (USA) konnten sie ein Übertragungsprotokoll entwickeln, mit dem sich das unvermeidliche Rauschen auslöschen lässt.

„Die Idee ist, die Qbits nicht direkt an eine Mikrowellen-Leitung anzukoppeln, sondern sowohl auf Sender- als auch auf Empfängerseite ein weiteres Quantensystem dazwischenzuschalten – einen Mikrowellen-Oszillator“, erklärt Peter Rabl.

„In der Mikrowellen-Leitung dazwischen entsteht ein Rauschen durch Wärmestrahlung, das lässt sich nicht verhindern“, sagt Benoit Vermersch. „Der entscheidende Punkt ist allerdings, dass dieses Rauschen beide Oszillatoren an beiden Enden auf die gleiche Weise beeinflusst. Daher ist es möglich, durch präzise Kontrollpulse den störenden Einfluss dieses Rauschens wieder exakt vom schwächeren Quanten-Signal zu trennen.“

„Nach unseren Berechnungen könnte man mit diesem Protokoll Qbits über hunderte Meter hinweg verbinden“, sagt Peter Rabl. „Man müsste die Leitungen dann zwar immer noch kühlen, doch auf lange Sicht ergeben sich damit technologisch durchaus machbare Möglichkeiten, ganze Gebäude oder auch Städte mit Mikrowellenleitungen quantenphysikalisch zu vernetzen.“

Originalpublikationen:

Quantum State Transfer via Noisy Photonic and Phononic. Waveguides. B. Vermersch, P.-O. Guimond, H. Pichler, and P. Zoller. Phys. Rev. Lett. 118, 133601
http://link.aps.org/doi/10.1103/PhysRevLett.118.133601

Intracity Quantum Communication via Thermal Microwave Networks. Ze-Liang Xiang, Mengzhen Zhang, Liang Jiang, and Peter Rabl. Phys. Rev. X 7, 011035
http://link.aps.org/doi/10.1103/PhysRevX.7.011035

Viewpoint: Microwave Quantum States Beat the Heat. Johannes Fink. Physics 10, 32

Rückfragehinweise:
Prof. Peter Rabl
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141830
peter.rabl@tuwien.ac.at

Dr. Benoit Vermersch
Institut für Theoretische Physik
Universität Innsbruck
Technikerstraße 25, 6020 Innsbruck
T: +43 512 507 52259
benoit.vermersch@uibk.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
20.08.2018 | Österreichische Akademie der Wissenschaften

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics