Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation: Jedes Photon zählt

21.01.2013
Ultraschnelle, effiziente und zuverlässige Einzelphotonendetektoren sind begehrte und dennoch bis heute noch nicht anwendungsreife Komponenten in der Photonik und der Quantenkommunikation.
Der Quantenphotoniker Dr. Wolfram Pernice vom Karlsruher Institut für Technologie (KIT) erzielte nun in Zusammenarbeit mit Kollegen der Universitäten Yale, Boston und Moscow State Pedagogical den entscheidenden Durchbruch mit einem direkt in den Chip integrierten Einzelphotonendetektor. Der Detektor schafft gleichzeitig höchste Wiedergabetreue und Auswertungsgeschwindigkeit und hat eine nur sehr geringe Fehlerquote. Die Ergebnisse sind in Nature Communications veröffentlicht (doi:10.1038/ncomms2307).

Ohne eine zuverlässige Detektion, also einer sicheren und schnellen Erfassung einzelner Photonen, lassen sich die neuesten Weiterentwicklungen im Bereich der optischen Datenübertragung oder der Quantencomputer nicht wirklich nutzen. Das ist, als ob man bei einem herkömmlichen Rechner keinen Analog-Digital-Wandler hätte, um zu erkennen, ob die anliegende Spannung für eine 0 oder 1 steht. Obwohl in den vergangenen Jahren bereits verschiedene Modelle von Einzelphotonendetektoren entwickelt wurden, konnte bislang keiner wirklich zufriedenstellend eingesetzt werden.

Gleich mehrere neue Ideen und Weiterentwicklungen flossen in den im Rahmen des Projekts „Integrated Quantum-Photonics“ am DFG-Centrum für funktionelle Nanostrukturen (CFN) entwickelten Prototypen ein. Der neue im Wellenlängenbereich der Telekommunikation erprobte Einzelphotonendetektor erreicht eine Entdeckungseffizienz von 91 Prozent. Dieses Niveau war bisher unerreicht.

Fünf Faktoren überzeugen beim neuen Einzelphotonendetektor: 91% Entdeckungseffizienz, direkte Integration auf dem Chip, Zählraten im Gigahertztempo, hohe zeitliche Auflösung und vernachlässigbare Dunkelzählraten

Quelle: KIT/CFN

Der Clou sind die supraleitenden Nanodrahtdetektoren, die direkt auf einem nanophotonischen Wellenleiter aufgebracht werden. Bildlich darf man sich das wie eine lichtleitende Röhre vorstellen, um die ein Draht gewickelt ist, der sich im supraleitenden Zustand befindet und deswegen keinerlei elektrischen Widerstand aufweist. Der nanometerdünne Draht aus Niobnitrid absorbiert Photonen, die sich entlang des Wellenleiters ausbreiten. Wird ein Photon absorbiert, kommt es zum Verlust der Supraleitung, was sich als elektrisches Signal bemerkbar macht. Je länger diese Röhre ist, desto größer ist die Detektionswahrscheinlichkeit - dabei handelt es sich von Längen im Mikrometerbereich.

Eine weitere Besonderheit des Detektors ist, dass er direkt auf dem Chip installiert ist und somit beliebig vervielfältigt werden kann. Die bisher realisierten Einzelphotonendetektoren waren eigenständige Einheiten, die „vor den Chip geschaltet“ wurden. Eine solche Anordnung hat den großen Nachteil, dass Photonen in der zusätzlich benötigten Faserverbindung verloren gehen oder anderweitig absorbiert werden. Bei dem nun vollständig in den Silizium-Schaltkreis für Photonen eingebetteten Detektor entfällt diese Verlustquelle. Das führt neben der hohen Entdeckungseffizienz zu einer bemerkenswert niedrigen Dunkelzählrate. Bei einer Dunkelzählung handelt es sich um ein fälschlich detektiertes Photon, beispielsweise infolge einer spontanen Emission, eines Alphateilchens oder eines Störfeldes. Die Konstruktion ermöglicht auch eine ultrakurze Genauigkeitsschwankung von 18 Picosekunden, also 18 mal 10^-12 Sekunden, bei der Übertragung der Datensignale.

Die neuartige Lösung ermöglicht es darüber hinaus, mehrere Hunderte dieser Detektoren auf einem einzelnen Chip zu integrieren. Dies ist eine Grundvoraussetzung für die künftige Nutzung in optischen Quantenrechnern.

Der in dieser Studie demonstrierte Detektor wurde mithilfe von Wellenlängen in Telekom-Bandbreite analysiert. Dieselbe Detektorarchitektur kann aber auch für Wellenlängen im Bereich des sichtbaren Licht eingesetzt werden. Damit könnte das Prinzip für die Analyse all solcher Strukturen eingesetzt werden, die wenig Licht – also Photonen – emittieren, beispielsweise einzelne Moleküle oder Bakterien.
Vita Dr. Wolfram Pernice

Dr. Wolfram Pernice studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg. Aufgrund seiner herausragenden Studienleistung wurde der e-Fellow während seiner Studienzeit durch ein Baden-Württemberg-Stipendium gefördert. Ausgestattet mit einem Forschungsstipendium des britischen Engineering and Physical Sciences Research Council promovierte er anschließend in England an der Universität von Oxford über die Entwicklung von effizienten numerischen Methoden für die Simulation photonischer Geräte. Nach der Erlangung seines Doktorgrades im Jahr 2007 wechselte er Anfang 2008 von England in die USA an die Yale University, wo er in der Gruppe von Hong Tang - mit einem Humboldt-Stipendium gefördert - nanooptomechanische Systeme analysierte. Im Sommer 2011 erhielt Pernice die Zusage der Deutschen Forschungsgemeinschaft für die Leitung einer Emmy-Noether Nachwuchsgruppe. Seine Forschungsarbeit über integrierte quantenoptische und nanooptomechanische Systeme hatte die Kommission überzeugt. Als Emmy-Noether-Stipendiant konnte er sich seinen neuen Wirkungsort aussuchen und entschied sich für das Karlsruher Institut für Technologie (KIT). Hier ist er nun seit Oktober 2011 Nachwuchsgruppenleiter am Institut für Nanotechnologie (INT). Aktuell konnte er zum Jahresanfang für seine internationale Forschungsarbeit zusätzlich eine ‚Helmholtz International Research Groups‘-Unterstützung einwerben, die er dafür nutzen möchte, sein Karlsruher Team um einen weiteren Doktoranden zu ergänzen.
Das DFG-Centrum für Funktionelle Nanostrukturen (CFN) hat sich einem wichtigen Bereich der Nanotechnologie verschrieben: den funktionellen Nanostrukturen. Ziel ist es durch exzellente interdisziplinäre und internationale Forschung Nano-Strukturen mit neuen technologischen Funktionen darzustellen sowie den ersten Schritt von der Grundlagenforschung zur Anwendung zu gehen. Zurzeit arbeiten in Karlsruhe mehr als 250 Wissenschaftler und Techniker über das CFN vernetzt in mehr als 80 Teilprojekten zusammen. Der Fokus liegt auf den Bereichen Nano-Photonik, Nano-Elektronik, Molekulare Nanostrukturen, Nano-Biologie und Nano-Energie. http://www.cfn.kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Tatjana Erkert
DFG-Centrum für Funktionelle
Nanostrukturen (CFN)
http://www.cfn.kit.edu
Tel.: +49 721 608-43409
Fax: +49 721 608-48496
E-Mail: tatjana.erkert@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.cfn.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics