Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenirrfahrt im Labor

10.03.2010
Innsbrucker Physiker schicken Atome auf die Wanderschaft

Eine Zufallsbewegung mit bis zu 23 Schritten haben Physiker um Christian Roos und Rainer Blatt vom Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften in einem Quantensystem realisiert. Es ist das erste Mal, dass ein solcher Quantenzufallsprozess mit gefangenen Ionen in diesem Detail demonstriert wurde.

Ein Wanderer muss sich an jeder Wegkreuzung für einen der möglichen Wege entscheiden. Die Summe dieser Entscheidungen führt ihn schließlich an sein Ziel. Hat der Wanderer seine Landkarte verloren, muss er die Entscheidungen zufällig treffen und mehr oder weniger lange nach seinem Ziel suchen. Die Wissenschaft spricht dann von einer Zufallsbewegung. Solchen Bewegungen („random walks“) begegnet man in Mathematik und Physik ständig. So hat etwa der schottische Botaniker Robert Brown 1827 entdeckt, dass Pollenkörner auf Wassertropfen unregelmäßig zuckende Bewegungen machen.

Ursache dafür sind die zufälligen Bewegungen der Wassermoleküle – ein Phänomen, das die Wissenschaft heute Brown’sche Molekularbewegung nennt. Ein anderes Beispiel ist das Galton-Brett, mit dem Schulkindern die Binomialverteilung veranschaulicht wird. Hier werden Kugeln über ein Brett voll Nägeln gerollt. An jedem Nagel muss sich eine Kugel entscheiden, ob sie links oder rechts vom Nagel vorbeirollt.

Atom macht „Quantenspaziergang“
Dieses Prinzip der Zufallsbewegung haben die Innsbrucker Forscher nun in die Quantenwelt übertragen und ein Atom zum „quantum walk“ animiert: „Wir fangen ein einzelnes geladenes Atom in einer elektromagnetischen Ionenfalle und kühlen es in seinen Grundzustand“, erklärt Christian Roos vom Institut für Quantenoptik und Quanteninformation (IQOQI). „Dann bringen wir das Teilchen in eine quantenmechanische Überlagerung aus zwei inneren Zuständen und schicken das Atom auf Wanderschaft.“ Die beiden inneren Zustände entsprechen der Entscheidung des Wanderers, nach links oder nach rechts zu gehen. Anders als der Wanderer muss sich das Atom aber nicht wirklich entscheiden, wohin es gehen will. Denn durch die Überlagerung der beiden Zustände liegen beide Möglichkeiten gleichzeitig vor. „Abhängig vom inneren Zustand bewegen wir das Ion dann nach links und rechts“, erläutert Christian Roos. „ Dabei werden die Bewegungszustände des Ions mit seinen inneren Zuständen verschränkt.“ Nach jedem Schritt verändern die Experimentalphysiker mit einem Radiofrequenzpuls die Überlagerung der inneren Zustände und bewegen – je nach Ergebnis – das Ion erneut nach links und rechts. Bis zu 23 Mal können sie diesen vom Zufall gesteuerten Vorgang wiederholen und so Daten darüber sammeln, wie sich Quantenzufallsprozesse verhalten. Durch die Verwendung eines zweiten Ions haben die Wissenschaftler das Experiment auch noch erweitert: Dann erhält das wandernde Ion eine dritte Möglichkeit, es kann sich dann entscheiden zwischen links gehen, rechts gehen und einfach stehen bleiben.
Phänomene der Natur besser verstehen
Die statistische Auswertung von zahlreichen solchen Durchläufen bestätigt, dass sich Quantenzufallsprozesse anders verhalten als klassische Zufallsbewegungen. Während sich zum Beispiel beim Galton-Brett die Kugeln statistisch nur langsam vom Ausgangspunkt wegbewegen, zeigen Quantenteilchen einen regelrechten Fluchtreflex auf ihren Irrfahrten. Sie entfernen sich statistisch sehr rasch von ihrem Ursprung.

Anwendung finden solche Experimente, die in ähnlicher Weise auch in Bonn, München und Erlangen mit Atomen, Ionen und Photonen durchgeführt worden sind, einerseits bei der Untersuchung von Naturphänomenen. So vermutet die Forschung zum Beispiel, dass der Energietransport in Pflanzen durch solche Quantenzufallsprozesse sehr viel effizienter als auf klassische Weise funktioniert. Andererseits gilt ein solches Quantenzufallsregime auch als mögliches Modell für einen Quantencomputer, auf dem universelle Probleme gelöst werden können. So könnte etwa die Leistungsfähigkeit von Suchalgorithmen durch die gleichzeitige Wahl von allen möglichen Wegen dramatisch gesteigert werden.

Unterstützt wurden die Forscher bei diesem Experiment vom österreichischen Wissenschaftsfonds FWF und der Europäischen Kommission.

Publikation: Realization of a quantum walk with one and two trapped ions. Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos CF. Phys. Rev. Lett. 104, 100503 (2010) http://dx.doi.org/10.1103/PhysRevLett.104.100503

Bilder unter: http://iqoqi.at/download

Kontakt:
Dr. Christian Roos
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1
A-6020 Innsbruck, Austria
Tel.: +43 512 507-4728
E-Mail: Christian.Roos@uibk.ac.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at
http://www.quantumoptics.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
22.10.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
22.10.2019 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungsnachrichten

Studenten entwickeln einen Koffer, der automatisch auf Schritt und Tritt folgt

22.10.2019 | Innovative Produkte

Chemikern der Universität Münster gelingt Herstellung neuartiger Lewis-Supersäuren auf Phosphor-Basis

22.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics