Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanteninformation mit Schall übertragen

04.06.2018

Wie lässt sich Quanteninformation von einem Atom zum anderen übertragen? Ein Team der TU Wien und der Harvard University schlägt vor, Phononen zu verwenden – die Quanten des Schalls.

Die Quantenphysik ist dabei, einen neuen technologischen Entwicklungsschub auszulösen: Neuartige Sensoren, sichere Datenübertragungsmethoden und vielleicht sogar neuartige Computer sollen durch Quanten-Technologien möglich werden. Das entscheidende Problem daran ist allerdings, ausreichend viele Quantensysteme (etwa einzelne Atome) auf die richtige Weise miteinander zu koppeln und präzise anzusteuern.


Mikrowellen beeinflussen die Quanten-Schalter in einem dünnen Diamantstäbchen, die dann durch Schwingungen (Phononen) miteinander gekoppelt werden.

TU Wien

Ein Forschungsteam der TU Wien und der Harvard University hat nun einen neuen Weg untersucht, die nötigen Quanteninformation zu übertragen: Sie schlagen vor, winzige mechanische Schwingungen einzusetzen. Die Atome werden dabei durch sogenannte Phononen miteinander gekoppelt – sie sind die kleinsten quantenphysikalischen Einheiten von Schwingungen oder Schallwellen.

Winzige Diamanten mit erwünschten Fehlern

„Wir untersuchen winzige Diamanten mit eingebauten Siliziumatomen – diese Quantensysteme gelten als besonders erfolgversprechend“, sagt Prof. Peter Rabl vom Atominstitut der TU Wien. „Normalerweise bestehen die Diamanten aus reinem Kohlenstoff, doch wenn man an bestimmten Stellen Siliziumatome einbaut, ergeben sich Fehler im Kristallgitter, an denen man Quanteninformation speichern kann.“

Die mikroskopischen Fehler im Diamantgitter lassen sich wie ein winziger Schalter verwenden und mit Hilfe von Mikrowellen zwischen einem Zustand höherer Energie und einem Zustand niedrigerer Energie hin und her schalten.

Gemeinsam mit einem Team der Universität Harvard entwickelte Peter Rabls Forschungsgruppe nun eine neue Idee, diese Quantenspeicher im Diamant kontrolliert miteinander zu koppeln: Man kann sie der Reihe nach, wie Perlen einer Perlenkette, in ein winziges Diamant-Stäbchen einbauen, mit einer Länge im Mikrometerbereich. Ähnlich wie eine Stimmgabel kann ein solches Stäbchen dann zum Schwingen angeregt werden – allerdings handelt es sich dabei um minimale Schwingungen, die nur mit Hilfe der Quantentheorie beschrieben werden können. Und mit diesen Schwingungen lassen sich die Siliziumatome quantenphysikalisch koppeln.

„Licht besteht aus Photonen, den Quanten des Lichts. Und genauso lassen sich auch mechanische Schwingungen oder Schallwellen quantenphysikalisch beschreiben: Sie bestehen aus den sogenannten Phononen, den kleinstmöglichen Einheiten von mechanischen Schwingungen“, erklärt Peter Rabl. Sich die Wie das Forschungsteam nun mit Hilfe von Simulationsrechnungen zeigen konnte, lassen sich mit Hilfe dieser Phononen beliebige Quanten-Speicher im Diamantstäbchen miteinander verbinden.

Dazu werden die einzelnen Siliziumatome durch Mikrowellen „ein- und ausgeschaltet“. Sie geben dabei Phononen ab oder nehmen Phononen auf. Damit kann man eine Quanten-Verschränkung unterschiedlicher Silizium-Fehlstellen erzeugen und Quanteninformation übertragen.

Auf dem Weg zum skalierbaren Quanten-Netzwerk

Bisher war völlig unklar gewesen, ob so etwas möglich ist: „Gewöhnlich erwartet man, dass die Phononen irgendwo absorbiert werden, oder in Kontakt mit der Umgebung geraten und dadurch ihre quantenphysikalischen Eigenschaften verlieren“, sagt Peter Rabl. „Phononen sind sozusagen der Feind der Quanteninformation. Wir konnten aber durch unsere Rechnungen nun zeigen, dass mit Hilfe einer passenden Steuerung durch Mikrowellen die Phononen tatsächlich technisch nutzbar sind.“

Ein großer Vorteil der neuen Technologie liegt in ihrer Skalierbarkeit: „Es gibt viele Ideen für Quantensysteme, die sich prinzipiell technologisch nutzen lassen. Das große Problem daran ist, dass es sehr schwierig ist, ausreichend von ihnen zu vernetzen, um etwa komplizierte Rechenoperationen mit ihnen durchführen zu können“, sagt Peter Rabl. Die neue Strategie, Phononen dafür einzusetzen, könnte einen völlig neuen Weg zu einer skalierbaren Quantentechnologie ebnen.

Originalpublikation: M.-A. Lemonde et al., Phys. Rev. Lett. 120, 213603. DOI: 10.1103/PhysRevLett.120.213603 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.213603

Rückfragehinweise:
Prof. Peter Rabl
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141830
peter.rabl@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics