Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantendynamik von Materiewellen enthüllt Mehrteilchen-Kollisionen

13.05.2010
LMU-MPQ-Wissenschaftler weisen erstmals exotische Mehrteilchenwechselwirkung an ultrakalten Atomen in einem optischen Gitter nach.

Bei extrem tiefen Temperaturen können sich Atome in sogenannten Bose-Einstein-Kondensaten zu kohärenten, laserartigen Materiewellen zusammenschließen. Aufgrund der Wechselwirkungen der Atome untereinander entwickeln diese Materiewellen eine Art Eigendynamik, die zu einem zeitlich periodischen Zusammenbrechen und Wiederaufleben des Wellenfeldes führt.

Einer Gruppe um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor der Abteilung Quanten-Vielteilchensysteme am Max-Planck-Institut für Quantenoptik in Garching bei München) gelang es jetzt erstmals, diese Quantendynamik über lange Zeiten hinweg zu beobachten. Dazu erzeugten die Forscher Tausende von Miniatur-Bose-Einstein-Kondensaten, regelmäßig angeordnet in einem „optischen Gitter“, und verfolgten das Zusammenbrechen und Wiederaufleben der Materiewellen. Die genaue Analyse der Messreihen enthüllte eine komplexe Struktur in dieser Dynamik, die durch fundamentale Vielteilchenwechselwirkungen verursacht wird: entgegen gängigen Annahmen spielen dabei nicht nur paarweise Wechselwirkungen, sondern auch Stöße zwischen mehreren Atomen eine wichtige Rolle (Nature, DOI:10.1038/nature09036). Dieses Ergebnis ist einerseits von fundamentaler Bedeutung für das Verständnis von Quanten-Vielteilchensystemen; es ermöglicht andererseits die Erzeugung neuer exotischer Materiezustände, die auf solchen Vielteilchenwechselwirkungen basieren.

Das Experiment beginnt damit, eine dünne Wolke aus mehreren hunderttausend Atomen auf Temperaturen dicht über dem absoluten Nullpunkt abzukühlen. Bei diesen Temperaturen bildet sich ein Bose-Einstein-Kondensat (BEC) aus, eine Quantenphase, in der sich alle Atome im gleichen Quantenzustand befinden. Diesem BEC wird nun ein optisches Gitter überlagert: das ist eine Art künstlicher Kristall aus Licht, in dem sich durch Überlagerung mehrerer stehender Laserlichtwellen helle und dunkle Gebiete periodisch abwechseln. In diesem – einem Eierkarton ähnlichen – Kristall verteilen sich die Atome auf die Gitterplätze. Doch während in einem echten Eierkarton in einer Kuhle entweder genau ein Ei oder gar keins sitzt, werden die Besetzungszahlen hier von den Gesetzen der Quantenmechanik geregelt. Zwar ist die Wahrscheinlichkeit für ein oder zwei Atome an einem Gitterplatz am größten, aber bei entsprechender Einstellung der Gitterhöhe (d.h. der Laserintensität) können auch drei, vier oder mehr Atome vorkommen. Und da es sich hier um Quantenteilchen handelt, können alle Besetzungszahlen – mit unterschiedlichem Gewicht – gleichzeitig auftreten.

Die Existenz dieser Überlagerungszustände ist der Schlüssel für das neue Messprinzip. „So wie Pendel unterschiedlicher Länge auch unterschiedliche Schwingungsfrequenzen haben, so ist jeder Besetzungszustand durch eine bestimmte Eigenfrequenz charakterisiert“, erklärt Sebastian Will, Doktorand am Experiment. „Stöße zwischen den Atomen beeinflussen die Eigenfrequenzen. Würden die Atome z.B., wie bislang angenommen, immer nur paarweise zusammenstoßen, dann wären die Frequenzen höherer Besetzungszustände immer ein Vielfaches der Grundfrequenz eines Zweierzustands.“

Mit einer trickreichen experimentellen Anordnung gelang es den Physikern, die Überlagerung der verschiedenen Schwingungen in ihrer zeitlichen Entwicklung zu verfolgen. Die Wissenschaftler konnten beobachten, dass in regelmäßigen Zeitabständen Interferenzbilder auftreten – ein Zeichen dafür, dass die Schwingungen im Gleichtakt sind – und wieder zusammenfallen (siehe Abbildung unten). „Intensität und Periodizität der Interferenzbilder ergeben ein Schwebungsmuster, das sich mit einer reinen Paar-Wechselwirkung nicht in Einklang bringen lässt“, erklärt Sebastian Will. „Vielmehr muss ein komplexerer Stoßmechanismus wirksam sein, der auch die Wechselwirkung von mehreren Atomen miteinander, wir konnten eine Beteiligung von bis zu sechs nachweisen, einschließt.“ Solche exotischen Stöße sind möglich, da Heisenbergs Unschärfeprinzip den Atomen erlaubt, während der Kollision einen virtuellen Umweg über energetisch höher gelegene Quantenzustände zu nehmen.

Dieses Resultat ist überraschend und von grundlegender Bedeutung, um die Wechselwirkung zwischen mikroskopischen Teilchen besser zu verstehen. Gleichzeitig demonstriert es, mit welchem hohen Grad an Kontrolle sich Quantenmaterie in optischen Gittern manipulieren lässt. Diese außergewöhnliche Steuerbarkeit wollen die Wissenschaftler nutzen, um komplexe Festkörpersysteme zu „simulieren“ und die der Supraleitung oder dem Quantenmagnetismus zugrunde liegende Physik zu erklären. Ein weiterer Vorteil von optischen Gittern liegt darin, dass jeder der mehreren hunderttausend Gitterplätze ein Miniaturlabor darstellt, um exotische Quantenzustände zu erzeugen. Dies macht diese Anordnungen zu den wahrscheinlich empfindlichsten Messinstrumenten für die Beobachtung atomarer Stöße. Olivia Meyer-Streng

Originalveröffentlichung:
Sebastian Will, Thorsten Best, Ulrich Schneider, Lucia Hackermüller, Dirk-Sören Lühmann, Immanuel Bloch
„Time-resolved observation of coherent multi-body interactions in quantum phase revivals“

Nature, DOI:10.1038/nature09036, 13. Mai 2010

Kontakt:

http://www.quantum-munich.de

Dipl.-Phys. Sebastian Will
LMU München, Fakultät für Physik
Schellingstr. 4
80799 München
Tel.: +49 89 2180 6133
Tel. (mobil): +49 177 2581588
Fax: +49 89 2180 63851
E-Mail: sebastian.will@lmu.de
Prof. Dr. Immanuel Bloch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 32905 138
Fax: +49 89 32905 313
E-Mail: immanuel.bloch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics