Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputer aus gängigen Halbleitermaterialien

02.12.2015

Physiker der Technischen Universität München, des Los Alamos National Laboratory und der Universität Stanford (USA) spürten in Halbleiter-Nanostrukturen Mechanismen auf, aufgrund derer gespeicherte Informationen verloren gehen können – und stoppten das Vergessen mit Hilfe eines externen Magnetfeldes. Die neu entwickelten Nanostrukturen bestehen aus gängigen Halbleitermaterialien, kompatibel zu üblichen Herstellungsprozessen.

Quantenbits, kurz Qubits, sind die Grundelemente der „Quanten-Informationstechnologie“ (QIT), die möglicherweise die Zukunft der Computer darstellt. Weil er Probleme quantenmechanisch verarbeitet, könnte ein solcher Quantencomputer einmal komplexe Probleme mit weit höherer Geschwindigkeit lösen als heutige, so die Hoffnung.


Elektron im Quanten-Punkt, beeinflusst von Kernspins der Umgebung

Grafik: Fabian Flassig / TUM


Alexander Bechthold in seinem Labor im Walter Schottky Institut der TU München

Andreas Battenberg / TUM

Prinzipiell gibt es verschiedene Möglichkeiten, solche Qubits zu realisieren: Photonen kommen hier ebenso in Frage wie gefangene Ionen oder Atome, deren Zustand jeweils gezielt mit Hilfe eines Lasers verändert werden kann. Die Kernfrage für eine mögliche Anwendung als Speicherbaustein ist, wie lange sich Informationen in einem System sichern lassen und welche Mechanismen zum Verlust einer gespeicherten Information führen.

Physiker um Alexander Bechtold und Professor Jonathan Finley vom Walter-Schottky-Institut der Technischen Universität München und des Exzellenzclusters Nanosystems Initiative Munich (NIM) haben nun ein aus einem einzelnen Elektron bestehendes System vorgestellt, welches in einer Halbleiter-Nanostruktur gefangen ist. Informationsträger ist hierbei der Elektronenspin.

Die Forscher konnten einerseits verschiedene Verlustmechanismen erstmals exakt nachweisen und andererseits zeigen, dass sich die gespeicherte Information mit Hilfe eines starken, äußeren Magnetfelds dennoch erhalten lässt.

Elektron gefangen im Quanten-Dot

Die TUM-Physiker bedampften für ihre Nanostruktur ein Substrat aus Gallium-Arsenid mit Indium-Gallium-Arsenid. Aufgrund der unterschiedlichen Gitterabstände beider Halbleitermaterialien entsteht am Übergang eine Verspannung im Kristallgitter. Das System bildet daher in regelmäßigen Abständen wenige Nanometer große „Hügel“, sogenannte Quanten-Dots.

Kühlt man die Quantenpunkte auf die Temperatur flüssigen Heliums und regt sie optisch an, ist es möglich, ein einzelnes Elektron gezielt in diesen Quanten-Dots gefangen zu halten. Die Spin-Zustände des Elektrons lassen sich dabei als Informationsspeicher nutzen. Laserpulse können sie optisch von außen lesen und verändern. Daher stellt das System einen idealen Grundbaustein zum Aufbau künftiger Quantencomputer dar.

Spin-up oder Spin-down entsprechen hierbei den klassischen Informationseinheiten 0 und 1, dazu kommen aber außerdem noch die Zwischenzustände aus den quantenmechanischen Überlagerungen von up und down.

Bisher unbekannte Verlustmechanismen

Allerdings gibt es ein Problem: „Wir haben herausgefunden, dass die Verspannungen im Halbleitermaterial zu einem neuen bis vor kurzem noch unbekannten Verlustmechanismus führen“, sagt Alexander Bechtold. Die Verspannungen erzeugen nämlich winzige elektrische Felder im Halbleiter, die sich auf den Spin der Atomkerne auswirken.

„Das ist eine Art piezoelektrischer Effekt“, sagt Bechtold. „Es kommt dabei zu unkontrollierten Fluktuationen der Kernspins.“ Diese können wiederum den Spin des Elektrons, also die gespeicherte Information, verändern. Innerhalb von hundert Nanosekunden würde sie verloren gehen.

Darüber hinaus konnte das Team um Alexander Bechtold noch weitere Verlustmechanismen nachweisen, etwa dass generell jeder Elektronenspin von den Spins der ihn umgebenden etwa 100.000 Atomkerne beeinflusst wird.

Rettung vor dem quantenmechanischen Vergessen

„Beide Verlustkanäle lassen sich jedoch abschalten, wenn wir ein etwa 1,5 Tesla starkes Magnetfeld anlegen“, sagt Bechtold. „Das entspricht der Magnetfeldstärke eines starken Permanentmagneten. Damit stabilisieren wir die Kernspins, und die Informationen bleiben gespeichert.“

„Das System ist insgesamt äußerst vielversprechend“, so Jonathan Finley, Leiter der Forschungsgruppe. „Die Halbleiter-Quanten-Dots haben den Vorteil, ideal mit bestehender Computertechnologie zu harmonieren, da sie aus ähnlichen Halbleiter-Materialien bestehen.“ Sie ließen sich sogar mit elektrischen Kontakten versehen und so nicht nur optisch mit dem Laser, sondern zusätzlich mit Hilfe etwa von Spannungspulsen ansteuern.

Die Arbeiten wurden gefördert mit Mitteln der Europäischen Gemeinschaft (S3 Nano und BaCaTeC), des US Department of Energy, des US Army Research Office (ARO), der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich (NIM) und SFB 631), der Alexander von Humboldt Stiftung und des TUM Institute for Advanced Study (Focus Group Nanophotonics and Quantum Optics).

Publikation:

Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot; Alexander Bechtold, Dominik Rauch, Fuxiang Li, Tobias Simmet, Per-Lennart Ardelt, Armin Regler, Kai Müller, Nikolai A. Sinitsyn and Jonathan J. Finley; Nature Physics, 11, 1005-1008 (2015) – DOI: 10.1038/nphys3470

Kontakt:

Prof. Dr. Jonathan J. Finley
Walter Schottky Institut
Technische Universität München
85748 Garching, Germany
Tel.: +49 89 289 11481
E-Mail: jonathan.finley@wsi.tum.de

Weitere Informationen:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3470.html Publikation
http://www.wsi.tum.de Website des Walter Schottky Instituts
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32776/ Presseinformation der TUM

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
28.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics