Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenbeugung an einem Hauch von Nichts

25.08.2015

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt. Eine europäische Kollaboration hat nun erstmals die Delokalisation von massiven Molekülen an einem Gitter nachgewiesen, das nur noch eine einzige Atomlage dick ist. Dieses Experiment lotete die technischen Grenzen der Materiewellentechnologie aus und knüpft dabei an ein Gedankenexperiment von Bohr und Einstein an. Die Ergebnisse werden aktuell im Journal "Nature Nanotechnology" veröffentlicht.

Die quantenmechanische Wellennatur der Materie ist die Grundlage für viele moderne Technologien, wie z. B. die höchstauflösende Elektronenmikroskopie, die Strukturuntersuchung von Festkörperphysik mit Neutronen oder in hochempfindlichen atomaren Trägheitssensoren.


Mit modernsten Fabrikationsmethoden können atomar dünne Nanomasken hergestellt werden, die sich als hinreichend robust für die molekulare Quantenoptik erweisen.

Copyright: Quantennanophysik, Fakultät für Physik, Universität Wien; Bild-Design: Christian Knobloch

In der Forschungsgruppe um Markus Arndt, Professor für Quantenphysik an der Universität Wien, wird die Frage erforscht, wie man die Grundlagen solcher Quantentechnologien auf große Moleküle oder Cluster übertragen und nutzen kann.

Um die quantenmechanische Wellennatur eines solchen Objekts zu demonstrieren, muss es zunächst delokalisiert werden. Dafür wird Heisenbergs Unschärferelation genutzt: Werden die Moleküle von einer punktförmigen Quelle auf die Reise geschickt, "vergessen" sie nach einiger Zeit, wo sie sich befinden.

Stellt man ihnen jetzt ein Gitter in den Weg, so wissen sie nicht, durch welchen Spalt sie fliegen. Es ist, als ob sie durch mehrere Spalte gleichzeitig gehen würden. Dadurch entsteht eine charakteristische Verteilung der Teilchen hinter dem Gitter, ein Beugungs- oder Interferenzmuster, das man nur aufgrund der quantenmechanischen Wellennatur verstehen kann.

Am nanotechnologischen Limit

In einem europäischen Konsortium mit Partnern um Ori Cheshnovsky von der Tel Aviv University, wo die Nanomasken geschrieben wurden, sowie mit Unterstützung von Gruppen in Jena (Biphenyl-Nanomembranen, Prof. Turchanin) und Wien (höchstauflösende Elektronenmikroskopie, Prof. Meyer) zeigen sie erstmals, dass solche Strukturen auch in die dünnsten möglichen Membranen geschrieben werden können.

Mittels fokussierter Ionenstrahlen wurden nanomechanische Gitter in ultradünne Membranen aus Siliziumnitrid, Biphenylmolekülen und Kohlenstoff geschrieben und diese in höchstauflösender Elektronenmikroskopie analysiert. Dabei gelang es schließlich, stabile und hinreichend großflächige Strukturen selbst in atomar dünnem, einlagigem Graphen herzustellen.

Schon in früheren Experimenten waren solche Gitter nur etwa ein Hundertstel eines Haardurchmessers dick. Aber selbst solche hauchdünnen Strukturen sind noch zu dick, wenn die daran gebeugten Moleküle aus Dutzenden von Atomen bestehen. Kräfte, die auch zum Beispiel dafür verantwortlich sind, dass Geckos an der Wand laufen können, schränken die Anwendbarkeit von materiellen Gittern ein.

So ziehen die Wände des Gitters auch die fliegenden Moleküle aus dem Strahl, so dass sie für den Versuch verloren gehen. "Es war eine große Herausforderung, die Dicke dieser Gitter – und damit die angesprochenen Kräfte – bis auf das fundamental mögliche Minimum zu reduzieren, und dennoch eine stabile Beugungsstruktur zu bauen", erläutert Markus Arndt.

"Das sind die dünnsten Beugungsstrukturen für die Materiewellenoptik, die je geschaffen wurden. Trotzdem sind sie so robust, dass sie ihren Zweck sehr gut erfüllen", freut sich auch Christian Brand, Erstautor der Studie, und ergänzt: "Bei einer Dicke von nur einem millionstel Millimeter beeinflusst das Gitter die hindurchfliegenden Moleküle nur noch für wenige billionstel Sekunden.“

Ein Gedankenexperiment von Bohr und Einstein

Jedes Nanogitter ähnelt einer winzigen Harfe. Damit stellt sich die Frage, ob die Moleküle, die mal nach rechts und mal nach links gebeugt werden, diese Harfe in Schwingung versetzen können. Wäre dies der Fall, so würde die je angestoßene Saite den Weg des Moleküls verraten, und die charakteristische Quanteninterferenz würde verschwinden. Dieses Modell realisiert ein Gedankenexperiment zwischen Niels Bohr und Albert Einstein, die vor vielen Jahrzehnten darüber debattierten, ob es möglich sei, den Weg eines Quantums durch einen Doppelspalt zu kennen und dennoch seine Wellennatur (das Interferenzbild) zu sehen.

"Und wieder ist es Werner Heisenbergs Unschärfe, welche die Situation klärt: Obwohl die Moleküle bei der Beugung am Gitter abgelenkt werden und es ein wenig in Bewegung versetzen, ist dieser Rückstoß immer noch kleiner als die natürliche, quantenmechanische Bewegungsunschärfe des Gitters und somit prinzipiell nicht messbar. Das gilt sogar für Strukturen, die nur ein Atom dick sind", so Arndt abschließend.

Publikation in "Nature Nanotechnology":
"An atomically thin matter-wave beamsplitter"; C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, M. Arndt; Nature Nanotechnology (2015),
DOI: 10.1038/nnano.2015.179

Wissenschaftlicher Kontakt
Dr. Christian Brand‚
Quantum Nanophysics, VCQ, QuNaBioS,
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43 1 4277 511 72
brandc6@univie.ac.at

Univ. Prof. Markus Arndt,
Quantum Nanophysics, VCQ, QuNaBioS,
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43 1 4277 512 10
markus.arndt@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Massereiche Sternembryos wachsen in Schüben
14.07.2020 | Max-Planck-Institut für Astronomie

nachricht Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar
13.07.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hammer-on – wie man Atome schneller schwingen lässt

Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben. Die mit dem Strom verknüpfte Ladungsverschiebung zwischen Gallium- und Arsen-Atomen wirkt über elektrische Wechselwirkungen zurück auf die Schwingungen.

Hammer-on ist eine von vielen Rockmusikern benutzte Technik, um mit der Gitarre schnelle Tonfolgen zu spielen und zu verbinden. Dabei wird eine schwingende...

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Anwendungslabor Industrie 4.0 der THD: Smarte Lösungen für die Unikatproduktion

14.07.2020 | Informationstechnologie

Neue Kunststoff-Schaltschränke AX von Rittal

14.07.2020 | Maschinenbau

Förderanlagen: Mehr Flexibilität durch optimierte Layouts

14.07.2020 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics