Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Vielteilchensysteme auf dem Weg zurück zum Gleichgewicht

23.02.2015

Fortschritte in der experimentellen und theoretischen Physik ermöglichen ein tieferes Verständnis der Dynamik und Eigenschaften von Quanten-Vielteilchensystemen

Bedenkt man, wie viele Teilchen in einem Kubikzentimeter Luft oder Festkörper enthalten sind (ca. 10 hoch 19 bis 10 hoch 23), so ist es eigentlich kaum vorstellbar, dass Physiker heute im Labor Ensembles aus nur wenigen Hundert oder sogar nur einer Handvoll Atome präparieren können. Noch dazu haben sie ihre Methoden so verfeinert, dass sie die Teilchen einzeln oder als Gesamtheit gezielt manipulieren und die Wechselwirkungen zwischen ihnen steuern können.


Illustration der verschiedenen Möglichkeiten, Quanten-Vielteilchensysteme zu beeinflussen.

(Abteilung Theorie, MPQ)

Aufgrund neuer numerischer Verfahren, leistungsfähiger Computer, sowie neuer theoretischer Modelle hat die theoretische Beschreibung solcher Quanten-Vielteilchensysteme nicht weniger Fortschritte gemacht. In einem jüngst in der Zeitschrift Nature Physics (3. Februar 2015) veröffentlichten Artikel geben Prof. Dr. Jens Eisert, Mathis Friesdorf (beide vom Dahlem Center for Complex Quantum Systems, Freie Universität Berlin) und Dr. Christian Gogolin, Postdoc-Wissenschaftler in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ (Garching) und Research Fellow am ICFO (Barcelona), einen Überblick, welche Arten von Systemen bereits realisiert werden konnten, wie deren Verhalten theoretisch gedeutet wird und welche Entwicklungen in Zukunft zu erwarten sind.

Besonders aufschlussreich bei der Untersuchung von Quanten-Vielteilchensystemen sind die Prozesse, die ablaufen, wenn das System nach einer externen Störung wieder in einen Gleichgewichtszustand strebt. Hier gilt es die Brücke zu schlagen zwischen der mikroskopischen Beschreibung der lokalen, quantenmechanischen Dynamik auf der einen Seite, und der bekannten statistischen Behandlung großer Teilchenensembles auf der anderen. Welcher Ansatz die Oberhand behält, hängt entscheidend von der Größe des Systems und der Art der Wechselwirkung zwischen den Teilchen ab.

In vielen Experimenten werden heute lokale Systeme aus wenigen Teilchen realisiert, zwischen denen Wechselwirkungen mit sehr kurzer Reichweite herrschen. Von besonderer Bedeutung hierbei sind Experimente mit ultrakalten Quantengasen in sogenannten optischen Gittern (dabei handelt es sich im Wesentlichen um Gitter aus stehenden Wellen, die durch gegenläufige Laserstrahlen erzeugt werden). Solche Systeme können z.B. als Modelle für ferromagnetische Materialien dienen.

Ein sehr interessanter Gesichtspunkt in der Festkörperphysik, der ebenfalls mit diesen Systemen untersucht werden kann, ist Transport – etwa der von Elektronen und damit elektrischer Ladung in einem Kristall. In enger Zusammenarbeit finden experimentelle und theoretische Physiker dabei z.B. heraus, von welchen Parametern Eigenschaften wie die Leitfähigkeit bestimmt werden, oder wie Defekte und störende Einflüsse die Mobilität von Teilchen beeinflussen.

Größeren Quanten-Vielteilchensystemen nähern sich die Theoretiker gerne mit statistischen, der Thermodynamik entlehnten Methoden. Von besonderer Bedeutung ist hier die zeitliche Entwicklung des Systems, wenn man globale Parameter – etwa die Temperatur oder externe Felder – verändert. Eine solche Änderung kann ganz plötzlich und einmalig stattfinden, aber sich auch über einen gewissen Zeitraum hinziehen oder periodisch wiederholen.

Die Wissenschaftler gehen dabei der Frage nach, ob, wie und nach welchen Zeitspannen das System einen neuen Gleichgewichtszustand erreicht hat. In vielen Systemen lassen sich bei bestimmten „kritischen“ Werten der Parameter Übergänge in eine andere „Phase“ beobachten, bei denen sich die Systemeigenschaften dramatisch ändern – ähnlich dem Schmelzen von Eis oberhalb von Null Grad Celsius. Die Dynamik solcher Phasenübergänge zu verstehen ist für Theoretiker auch heute noch eine große Herausforderung.

Bewährt haben sich Quanten-Vielteilchensysteme bereits als Simulatoren von großen Systemen, z.B. mehrdimensionalen Gittersystemen, deren Nicht-Gleichgewichtsverhalten mit analytischen und numerischen Verfahren nicht mehr erfasst werden kann. Experimentelle Systeme mit ultrakalten Atomen in optischen Gittern stellen hier analoge Modelle dar, mit denen sich diese Grenzen überwinden lassen. In diesem Sinne können die Systeme auch als analoge Quantencomputer dienen, deren Leistung die von klassischen Computern bei bestimmten Aufgaben übertrifft.

Bei allen Fortschritten in der Erforschung von Quanten-Vielteilchensystemen sind noch viele Fragen offen. Zwar sind einzelne Schritte auf dem Weg in den Gleichgewichtszustand mittlerweile verstanden, doch wovon die Zeitskalen abhängen, auf denen diese Relaxationsprozesse ablaufen, ist bislang nur unzureichend verstanden. Darüber hinaus möchten die Wissenschaftler in Zukunft nicht nur geschlossene Systeme untersuchen, sondern auch solche, in denen es durch die Wechselwirkung mit der Umgebung zu Rauschen und Dissipation kommt. Diese an sich schädlichen Prozesse könnten, wenn sie wohl kontrolliert sind, genutzt werden, um interessante Materiezustände zu präparieren. Olivia Meyer-Streng

Originalveröffentlichung:
J. Eisert, M. Friesdorf and C. Gogolin
Quantum many-body systems out of equilibrium
Nature Physics, 3 February 2015, DOI:10.1038/Nphys3215

Kontakt

Prof. Dr. Ignacio Cirac
Honorarprofessor, TU München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -705/-736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Telefon: +34 935 54 22 37
E-Mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Emulsionen masschneidern

15.11.2018 | Materialwissenschaften

LTE-V2X-Direktkommunikation für mehr Verkehrssicherheit

15.11.2018 | Informationstechnologie

Daten „fühlen“ mit haptischen Displays

15.11.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics