Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Übertragung auf Knopfdruck

14.06.2018

In den neuen Quanten-Informationstechnologien müssen empfindliche Quantenzustände zwischen entfernten Quanten-Bits übertragen werden. ETH-Forschern ist es nun gelungen, eine solche Quanten-Übertragung zwischen zwei Festkörper-Qubits auf Kommando zu realisieren.

Datenübertragung ist das Rückgrat der modernen Informationsgesellschaft, im Grossen wie im Kleinen. Im Internet werden Daten, meist über Glasfaserkabel, zwischen Computern auf der ganzen Welt ausgetauscht. Innerhalb eines einzelnen Computers wiederum müssen ständig Informationen zwischen verschiedenen Prozessoren hin und her gesendet werden.


Erstmals gelang es, den Zustand eines supraleitenden Qubits mit einem Koaxialkabel auf ein anderes Qubit zu übertragen.

ETH Zürich / M. Pechal, T. Walter, P. Kurpiers

Auch für die neuen Quanten-Informationstechnologien, die derzeit entwickelt werden, ist ein zuverlässiger Datenaustausch von grosser Bedeutung – doch zugleich auch extrem schwierig. An der ETH Zürich ist es Physikern um Andreas Wallraff vom Labor für Festkörperphysik nun gelungen, Quanten-Informationen zwischen zwei knapp einen Meter voneinander entfernten Quanten-Bits auf Kommando und mit hoher Güte zu übertragen. Ihre Ergebnisse erscheinen diese Woche in der Fachzeitschrift Nature.

Fliegende Quanten-Bits

Das Besondere an Quanten-Informationstechnologien – dazu gehören etwa Quantencomputer und Quantenverschlüsselung – liegt in der Verwendung von Quanten-Bits oder «Qubits» als elementares Informationselement. Anders als klassische Bits können Qubits nicht nur den Wert 0 oder 1 haben, sondern auch so genannte Überlagerungszustände einnehmen. Daraus ergibt sich einerseits die Möglichkeit, enorm leistungsfähige Computer zu bauen, die mit diesen Überlagerungszuständen viel effizienter und schneller rechnen können als klassische Computer.

Andererseits sind diese Zustände aber auch sehr empfindlich und nicht ohne weiteres mit herkömmlichen Methoden zu übertragen. Zunächst muss nämlich der Zustand eines stationären Qubits in ein so genanntes «fliegendes» Qubit verwandelt werden, zum Beispiel in ein Photon, und anschliessend zurück auf ein anderes stationäres Qubit.

Vor einigen Jahren konnten Forscher auf diese Weise den Quantenzustand eines Atoms übertragen. Wallraff und seinen Mitarbeitern ist es nun erstmals gelungen, eine solche Übertragung auch von einem supraleitenden Festkörper-Qubit auf ein anderes zu realisieren, das sich in einiger Entfernung befand.

Dazu verbanden die Physiker zwei supraleitende Qubits mit einem Koaxialkabel, wie es auch für Antennenanschlüsse verwendet wird. Der Quantenzustand des ersten Qubits, der durch die Anzahl der in ihm enthaltenen supraleitenden Elektronenpaare (so genannte Cooper-Paare) definiert ist, wurde zunächst mit Hilfe von sehr genau kontrollierten Mikrowellenpulsen auf ein Mikrowellen-Photon eines Resonators übertragen.

Aus diesem Resonator konnte das Photon dann über das Koaxialkabel in einen zweiten Resonator fliegen, in dem sein Quantenzustand wiederum durch Mikrowellenpulse auf das zweite Qubit übertragen wurde. Ähnliche Experimente wurden kürzlich auch an der Yale University durchgeführt.

Deterministisch statt probabilistisch

«Das Wichtige an unserer Methode ist, dass die Übertragung des Quantenzustands deterministisch, also auf Knopfdruck, funktioniert», betont Philipp Kurpiers, der in Wallraffs Labor als Doktorand arbeitet. In einigen früheren Experimenten konnte zwar eine Übertragung von Quantenzuständen erreicht werden, aber diese war probabilistisch: Manchmal funktionierte sie, meistens aber nicht.

Eine erfolgreiche Übertragung konnte zum Beispiel durch ein «Verkündigungs-Photon» angezeigt werden. Hatte die Übertragung nicht geklappt, so probierte man es einfach noch einmal. Die effektive Quanten-Datenrate wurde dadurch natürlich stark reduziert. Für praktische Anwendungen sind daher deterministische Methoden, wie sie jetzt an der ETH demonstriert wurden, von Vorteil.

«Unsere Übertragungsrate für Quantenzustände ist eine der höchsten, die je realisiert wurden, und unsere Übertragungsgüte ist mit 80 Prozent sehr gut», sagt Andreas Wallraff. Mit Hilfe ihrer Technik können die Forscher auch eine quantenmechanische Verschränkung zwischen den Qubits herbeiführen, und das mehr als 50'000 Mal pro Sekunde.

Die Übertragungsprozedur selber dauert dabei weniger als eine Millionstel Sekunde, so dass auch bei der Übertragungsrate noch Luft nach oben ist. Quantenmechanische Verschränkung erzeugt eine innige Verbindung zwischen zwei Quantenobjekten auch über grosse Distanzen, die für Verschlüsselungstechniken oder Quanten-Teleportation genutzt wird.

Quantenübertragung für Quantencomputer

Als Nächstes wollen die Forscher versuchen, jeweils zwei Qubits als Sender und Empfänger zu verwenden, wodurch zum Beispiel ein Verschränkung-Austausch zwischen den Qubit-Paaren möglich wird. Ein solcher Prozess ist nützlich für grössere Quantencomputer, die in den nächsten Jahren gebaut werden sollen. Bisher bestehen diese zwar nur aus einigen wenigen Qubits, doch wenn man grössere Rechner bauen will, wird sich schon ab ein paar Hundert Qubits die Frage stellen, wie man diese am effektivsten miteinander verbindet, um die Vorteile eines Quantenrechners am besten auszunutzen.

Ähnlich wie bei heute verwendeten Clustern von Einzelrechnern könnten dann Quantencomputer-Module mithilfe der von Wallraff entwickelten Technik miteinander verbunden werden. Dabei könnte die jetzige Übertragungsdistanz von einem Meter durchaus noch gesteigert werden. Wallraff und seine Mitarbeiter haben kürzlich gezeigt, dass ein extrem stark gekühltes und dadurch supraleitendes Kabel Mikrowellenphotonen verlustarm über Strecken von einigen zehn Meter übertragen kann. Die Verkabelung eines Quanten-Rechenzentrums wäre so also durchaus machbar.

Literaturhinweis

Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J-C, Gasparinetti S, Blais B, Wallraff A. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature (2018), published online 14th June, doi: 10.1038/s41586-018-0195-y

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2018/06/quanten-ue...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics