Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Jonglieren mit freien Elektronen

19.08.2016

Göttinger Wissenschaftler manipulieren Quantenzustand freier Elektronen mit Lichtfeldern

In der klassischen Physik kann ein Elektron nur eine einzige, bestimmte Geschwindigkeit annehmen. Quantenmechanisch ist es jedoch möglich, dass es sich in einer Überlagerung verschiedener Geschwindigkeiten befindet.


Gemessene Verteilungen der Elektronengeschwindigkeiten im Experiment.

Foto: Universität Göttingen


In der makroskopischen Welt nicht ohne weiteres möglich: Wiederherstellen eines Ausgangszustands nach einer starken Störung.

Foto: Universität Göttingen

Im vergangenen Jahr hatten Wissenschaftler der Universität Göttingen gezeigt, dass ein solcher Überlagerungszustand freier Elektronen in einem ultraschnellen Elektronenmikroskop erzeugt werden kann, indem die Elektronen mit intensiven Lichtfeldern bestrahlt werden. Nun ist es ihnen erstmals gelungen, einen Strahl freier Elektronen durch eine präzise Folge von Lichtpulsen quantenmechanisch „kohärent“ zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature Physics erschienen.

Wenn wir einen Film sehen, der gerade rückwärts abgespielt wird, erkennen wir dies üblicherweise auf den ersten Blick. Unsere Alltagserfahrung lehrt uns, dass die meisten Vorgänge – beispielsweise das Zerspringen eines Blumentopfes – nicht ohne weiteres umkehrbar sind.

Dieser „gerichtete Zeitpfeil“ entsteht durch die ungeordnete Wechselwirkung der großen Zahl daran beteiligter Atome und Moleküle. Ist man jedoch in der Lage, ein einzelnes Atom oder Elektron isoliert zu betrachten, lassen sich mikroskopische, quantenmechanische Prozesse häufig sehr gezielt steuern oder auch vollständig umkehren, was auch als „kohärente Kontrolle“ bezeichnet wird.

Die Arbeitsgruppe um Prof. Dr. Claus Ropers und Dr. Sascha Schäfer am IV. Physikalischen Institut der Universität Göttingen hat nun experimentell gezeigt, dass diese Konzepte auf einen Strahl freier Elektronen übertragen werden können.

Im Experiment lenkten die Forscher einen kurzen Elektronenpuls durch eine nanoskopisch kleine Metallstruktur, in der die Elektronen mit mehrfachen, präzise gesteuerten Lichtfeldern wechselwirken können. Ausgehend von einer einzigen Anfangsgeschwindigkeit der Elektronen erzeugen diese Lichtfelder in der Nanostruktur quantenmechanische Überlagerungen verschiedener Geschwindigkeiten. Die genaue Intensität und die zeitliche Verzögerung dieser Lichtpulse beeinflusst dabei das Endergebnis.

So kann beispielsweise in einem ersten Laserbeschuss eine breite Verteilung an Geschwindigkeiten erzeugt werden. Mit einem zweiten Puls kann diese dann entweder noch stärker verbreitert oder wieder in den Ausgangszustand zurückversetzt werden – vereinfacht ausgedrückt wie das Zusammensetzen des zersprungenen Blumentopfes.

Eine analoge Form der mehrfach gepulsten Wechselwirkung mit Quantensystemen wird in verschiedenen Spektroskopie- und Abbildungsmethoden verwendet, beispielsweise in der Magnetresonanztomografie (MRT).

Auf dem gleichen Prinzip beruhen Atomuhren für hochpräzise Zeitmessungen und damit sogar die Definition der Sekunde. Auch die Göttinger Forscher verbinden ihre Technologie mit der Hoffnung auf neue Anwendungen. „Wir möchten die extrem hohe zeitliche Empfindlichkeit des Phänomens nutzen“, so Katharina Echternkamp, Doktorandin am IV. Physikalischen Institut und Erstautorin der Studie. „In Zukunft werden wir Elektronenpulse mithilfe von Licht maßgeschneidert strukturieren können, was völlig neue Formen der zeitaufgelösten Elektronenmikroskopie ermöglicht.“

Originalveröffentlichung: Katharina E. Echternkamp et al. Ramsey-type phase control of free-electron beams. Nature Physics 2016. Doi: 10.1038/nphys3844.

Kontaktadressen:
Prof. Dr. Claus Ropers
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4549
E-Mail: cropers@gwdg.de

Dr. Sascha Schäfer
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4576
E-Mail: schaefer@ph4.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/de/91116.html

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics