Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Qualitätskontrolle für Quantensimulatoren

18.11.2015

Wissenschaftler der FU Berlin, der Universidade Federal do Rio de Janeiro und des MPQ entwickeln neues Verfahren für die Zertifizierung photonischer Quantensimulatoren

Die Entwicklung von Geräten, welche die Gesetze der Quantenphysik ausnutzen, hat in den letzten 20 Jahren beeindruckende Fortschritte gemacht. Die neuen Quantentechnologien versprechen eine Reihe spannender Anwendungen, z.B. in der Informationsverarbeitung oder für die sichere Verschlüsselung von Daten. Deshalb wird schon über ihre Kommerzialisierung nachgedacht.


Grafik: Hintergrund: Public Domain / Stempel: ICFO, Spain

Doch ein wesentliches Hindernis dafür, einen aufwendigen experimentellen Aufbau in ein käufliches Produkt zu überführen, ist der Mangel an praktischen Testverfahren, die seine Funktionalität „zertifizieren“. Für photonische Quantengeräte, in denen Lichtquanten die Träger und Übermittler der Quanteninformation sind, hat jetzt ein internationales Team ein neues Zertifizierungsverfahren vorgeschlagen.

Die von Prof. Dr. Jens Eisert (Freie Universität Berlin), Prof. Dr. Leandro Aolita (Universidade Federal do Rio de Janeiro), Dr. Christian Gogolin, Postdoc-Wissenschaftler in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ (Garching) und Research Fellow am ICFO (Barcelona), sowie Martin Kliesch (Freie Universität Berlin) entwickelte Methode zeichnet sich durch Verlässlichkeit und Einfachheit aus.

Sie ist ein wichtiger Schritt auf dem Weg, quantenmechanisches Verhalten von Vielteilchensystemen kontrolliert nutzbar zu machen (Nature Communications, 18. November 2015, DOI 10.1038/NCOMMS9498).

Quantensimulation oder auch Quantenkryptographie haben in den letzten Jahren zunehmend an Bedeutung gewonnen. Ultimatives Ziel aller Anstrengungen auf diesem Gebiet ist ein „General Purpose Quantum Computer“– ein Gerät also, das sich für die Lösung vieler verschiedenartiger Probleme eignet und dabei deutliche Geschwindigkeitsvorteile gegenüber klassischen Rechnern hat.

Doch auf welchem Weg dieses Ziel erreicht werden kann, ist derzeit noch Gegenstand aktiver Forschung. Allerdings gibt es eine Art Zwischenstufe, die in greifbarer Nähe liegt, sogenannte Quantensimulatoren. Mit Hilfe von Quanteneffekten können sie zumindest einige spezielle Probleme lösen, die sich mit klassischen Verfahren nicht effizient behandeln lassen. Sie sind also schnell, jedoch nicht universell einsetzbar.

Eine Plattform für die Implementierung von Quantensimulatoren ist die Quantenoptik. Hier werden die quantenmechanischen Eigenschaften von Lichtquanten (sogenannten Photonen) wie Verschränkung und Superposition ausgenutzt. Aber wie kann man überprüfen, ob die Maschinen, die mit solchen mikroskopischen Teilchen arbeiten, wirklich so wie gewünscht funktionieren?

„Gerade bei diesen nicht universellen Quantensimulatoren gestaltet sich die Zertifizierung sehr schwierig“, erklärt Dr. Christian Gogolin. „Denn die Möglichkeiten des Quantensimulators, Rechnungen auszuführen, sind begrenzt. Man kann also nicht einfach ein beliebiges Testprogramm laufen lassen, sondern braucht eines, das speziell auf die Fähigkeiten des Simulators zugeschnitten ist.“

Das Problem der Zertifizierung lässt sich als eine Art Spiel verstehen, bei dem ein mächtiger Spieler, nennen wir ihn Merlin, gegen einen weit weniger mächtigen Spieler, nennen wir ihn Arthur, antritt. Merlin behauptet, einen Quantensimulator zu besitzen, doch Arthur ist skeptisch.

Er möchte überprüfen, ob Merlin tatsächlich einen Quantensimulator hat, mit dem er Aufgaben lösen kann, die seine (Arthurs) eigene Fähigkeiten übersteigen. Ziel ist es, einen Weg aufzuzeigen, wie sich Arthur – trotz seinen begrenzten Möglichkeiten – davon überzeugen kann, dass Merlin einen funktionierenden Quantensimulator besitzt.

In ihrer Veröffentlichung schlagen die Wissenschaftler einen Test vor, mit dem sich genau dies bei einer Reihe verschiedener optischer Quantensimulatoren erreichen lässt. Der skeptische Arthur muss dafür in der Lage sein, Messungen an einzelnen Photonen durchzuführen.

Darüber hinaus benötigt er einen klassischen Computer, der die Lösungen von Merlins Quantensimulator überprüft und sicherstellt, dass dieser korrekt funktioniert. Nach einer berechenbaren Anzahl von „Spielrunden“ kann Arthur zum Beispiel zu 99% sicher sein, dass Merlin einen gewählten Zielzustand bis auf eine fest vorgegebene Abweichung genau präparieren kann.

Experimentelle Techniken ermöglichen mittlerweile eine erstaunliche Vielfalt bei der Nutzung von Quanteneffekten. Umso wichtiger wird es nachzuweisen, dass diese Methoden auch den an sie gestellten Anforderungen genügen. „Bislang wurde wesentlich mehr Aufwand in die Realisierung von Quantentechniken als in ihre Zertifizierung gesteckt“, führt Prof. Jens Eisert aus.

„Jetzt ist man an einem Punkt angekommen, an dem dieser Engpass weitere experimentelle Fortschritte behindert. Unsere hier vorgeschlagene Methode ist praktisch und verlässlich. Sie ist zwar auf optische Implementierungen zugeschnitten, lässt sich aber im Prinzip auch auf nicht-photonische Quantentechnologien anwenden und liefert damit einen Beitrag, das Problem der Zertifizierung allgemein anzugehen.“ Olivia Meyer-Streng

Orginalveröffentlichung:
Leandro Aolita, Christian Gogolin, Martin Kliesch, and Jens Eisert
Reliable quantum certification for photonic quantum technologies
Nature Communications, 18. November 2015, DOI 10.1038/NCOMMS9498

Kontakt:

Prof. Dr. Ignacio Cirac
Honorarprofessor, TU München
Direktor am Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -705/736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park, Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Telefon: +34 935 54 22 37
E-Mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik,
Garching b. München
Telefon: +49 (0)89 / 32 905 -235
E-Mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.mpq.mpg.de/Theorygroup/CIRAC

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Fernsteuerung für alles Kleine
19.11.2019 | Technische Universität Wien

nachricht Atome hüpfen nicht gerne Seil
19.11.2019 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»

19.11.2019 | Biowissenschaften Chemie

Supereffiziente Flügel heben ab

19.11.2019 | Materialwissenschaften

Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics