Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pulsierende Leere

05.08.2010
Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik haben erstmals beobachtet was an dem Platz in einem Atom passiert, an dem ein einzelnes Elektron herausgeschlagen wurde. Sie berichten darüber im Wissenschaftsmagazin „Nature“ (5th August 2010, Doi:10.1038/nature09212).

Ein internationales Team vom Labor für Attosekundenphysik (www.attoworld.de), unter der Leitung von Prof. Ferenc Krausz am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität München hat erstmals beobachtet, was quantenmechanisch an dem Ort in einem Edelgasatom passiert, an dem kurz zuvor ein Elektron aus der Umlaufbahn herausgeschlagen wurde. Die Forscher benutzten dazu Lichtpulse, die nur wenig über 100 Attosekunden lang dauerten. Neben den Münchner Laserphysikern waren an der Kooperation auch Forscher aus Saudi-Arabien und den USA beteiligt.

Quantenteilchen, wie Elektronen, sind flüchtige Zeitgenossen. Wo genau sich Elektronen in einem Atom aufhalten, kann niemand sagen. Die Elementarteilchen folgen den Gesetzen der Quantenmechanik. Dabei ergibt sich die Aufenthaltswahrscheinlichkeit der Partikel durch eine Art pulsierende Wolke. Die Bewegung von Elektronen auf ihren Umlaufbahnen um Atome, dauern nur wenige Attosekunden. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde. Was genau die Elementarteilchen im Dunstkreis der Atome jedoch anstellen, ist bis heute weitgehend unbekannt. Fest steht, dass man nicht zeitgleich die Bewegung und den Aufenthaltsort eines Teilchens bestimmen kann. Deswegen ergibt sich eine Art Wolke für die quantenmechanische Beschreibung der Aufenthaltswahrscheinlichkeit von Elementarteilchen.

Jetzt ist dem internationalen Team vom Labor für Attosekundenphysik (LAP) erstmals die Beobachtung gelungen, wie sich die Elektronenwolke zeitlich bewegt, wenn eines der Elektronen im Atom durch einen Lichtpuls herausgelöst wird. Mit dabei in der Forschungs-Kooperation waren Physiker des Max-Planck-Instituts für Quantenoptik (Garching), der Ludwig-Maximilians-Universität München, der King-Saud-Universität (Riad, Saudi-Arabien), des Argonne National Laboratory (USA) und der University of California, Berkeley (USA).

Bei ihren Experimenten ließen die Physiker Laserpulse aus dem sichtbaren Bereich des Spektrums auf Kryptonatome treffen. Die Lichtpulse mit einer Dauer von weniger als vier Femtosekunden schlugen aus den äußeren Schalen der Atome jeweils ein Elektron heraus (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde).

Nachdem ein Laserpuls aus einem Atom ein Elektron herausgeschlagen hat, wird das Atom zum positiv geladenen Ion. An der Stelle, an der das Elektron das Atom verlassen hat entsteht ein positiv geladenes Loch. Quantenmechanisch gesehen pulsiert dieser freie Platz nun im Atom weiter als sogenannte Quantenschwebung.

Das Pulsieren konnten die Physiker nun mit einem zweiten Lichtpuls, der nur noch rund 150 Attosekunden dauerte und sich im Extremen ultravioletten Licht befand, direkt beobachten, also quasi fotografieren. Es stellte sich heraus, dass sich die Position des Lochs im Ion, also der positiv geladenen Stelle, sich innerhalb von nur rund sechs Femtosekunden zyklisch zwischen einer langgestreckten keulenartigen und einer kompakten zusammengezogenen Form hin und her bewegt. „Damit ist es uns zum ersten Mal gelungen, die Veränderung einer Ladungsverteilung in einem Atom direkt aufzuzeichnen“, erklärt Dr. Eleftherios Goulielmakis, Forschungsgruppenleiter im Team von Prof. Krausz.

„Mit unseren Experimenten haben wir einen einzigartigen Echtzeit-Einblick in den Mikrokosmos erhalten“, erläutert Ferenc Krausz. „Wir haben erstmals die quantenmechanischen Vorgänge in einem ionisierten Atom mit Attosekunden-Lichtblitzen aufgezeichnet.“ Die Erkenntnisse der LAP-Forscher helfen, die Dynamik von Elementarteilchen außerhalb des Atomkerns besser zu verstehen. Diese blitzschnelle Dynamik ist vor allem verantwortlich für den Ablauf biologischer und chemischer Prozesse.

Ein genaueres Wissen um diese Vorgänge wird künftig zur besseren Kenntnis der mikroskopischen Ursachen der Entstehung schwerer Krankheiten führen. Ebenso dient das Verständnis der ultraschnellen Prozesse zur schrittweisen Beschleunigung der elektronischen Datenverarbeitung in Richtung der ultimativen Grenzen der Elektronik. [Thorsten Naeser]

Weiteres Bildmaterial zum Thema ist erhältlich unter:
http://www.attoworld.de/Home/newsAndPress/BreakingNews/index.html
Originalveröffentlichung:
Eleftherios Goulielmakis, Zhi-Heng Loh, Adrian Wirth, Robin Santra, Nina Rohringer, Vladislav S. Yakovlev, Sergey Zherebtsov, Thomas Pfeifer, Abdallah M. Azzeer, Matthias F. Kling, Stephen R. Leone und Ferenc Krausz.
“Real-time observation of valence electron motion”,
Nature, 5. August 2010,Doi:10.1038/nature09212
Weitere Informationen erhalten Sie von:
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de
Dr. Eleftherios Goulielmakis
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32 905-632
Fax: +49 89 32 905-200
E-mail: elgo@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.attoworld.de
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics