Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PTB-Forscher können Ertrag von Solarzellen unter realen Bedingungen bestimmen

30.05.2016

An einem neuartigen Messplatz messen die Wissenschaftler Referenzsolarzellen mit bisher unerreichter Genauigkeit

Solarzellen werden im Labor bisher unter einheitlich festgelegten Bedingungen getestet. Da die realen Bedingungen, wie die Temperatur oder der Einfallswinkel des Lichts, je nach Region und Klima davon abweichen, lässt sich die Leistungsfähigkeit der Zellen im Einsatz vor Ort nur schwer ermitteln.


In einem Labor der PTB werden Solarzellen mit Weißlicht und einfarbigem Licht bestrahlt und kalibriert.

(Quelle: PTB)

Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) ist es gelungen, mittels eines laserbasierten spektralen Messverfahrens Solarzellen so umfassend zu charakterisieren, dass sich ihr Ertrag für jede beliebige klimatische Bedingung berechnen lässt.

Möglich ist dies durch die Kalibrierung von Referenzsolarzellen bei Standard-Testbedingungen (STC) mit einer weltweit einmaligen Messunsicherheit von weniger als 0,4 Prozent. Da der Markt für erneuerbare Energien boomt, wird es künftig immer wichtiger, die Leistungsfähigkeit der weltweit hergestellten Solarzellen präzise zu vergleichen.

Solarzelle ist nicht gleich Solarzelle. Sie unterscheiden sich hinsichtlich ihres Wirkungsgrades. Das heißt, die Zelle eines Herstellers kann bei einer bestimmten Sonneneinstrahlung (Bestrahlungsstärke) eine höhere elektrische Leistung erzielen als die gleichgroße Zelle eines anderen Herstellers. Während sich hierbei die elektrische Leistung relativ einfach messen lässt, ist die Bestimmung der Bestrahlungsstärke deutlich schwieriger.

Hierfür werden von der PTB Referenzsolarzellen kalibriert, deren Kurzschlussstrom ein Maß für die Bestrahlungsstärke darstellt. Der Kurzschlussstrom ist die größtmögliche Stromstärke, die ein Modul oder eine Zelle erzeugen kann. Gemessen wird bei Standard-Testbedingungen: Die Zelle wird auf Basis eines genormten Sonnenspektrums mit 1000 Watt pro Quadratmeter bestrahlt und in der Solarzelle herrschen 25 Grad Celsius.

Das Normspektrum, das sogenannte „Air Mass 1.5“ (AM1.5), entspricht der spektralen Zusammensetzung von Licht, das in einem Winkel von 48,19 Grad einfällt. So werden Referenzsolarzellen kalibriert, die von der Industrie, technischen Überwachungsinstitutionen oder Fachlaboren genutzt werden können. Problematisch ist nur, dass beispielsweise das Spektrum des Sonnenlichts je nach Tages- und Jahreszeit sowie nach Atmosphärenzusammensetzung variiert. Ebenso weichen Temperatur, Einfallswinkel und Bestrahlungsstärke je nach Einsatzort der Solarzellen von den oben genannten Standardtestbedingungen ab. Insofern lassen sich bei STC nur schwer Ertragsprognosen für die weltweit verwendeten Solarzellen ermitteln.

Daher hat die PTB ihren Solarzellen-Messplatz erweitert. Für die Vergleichsmessungen verwenden die Braunschweiger Wissenschaftler das sogenannte Differential-Spectral-Responsibility-(DSR)-Verfahren, das jüngst zum Laser-DSR-Verfahren weiterentwickelt wurde.

Damit lassen sich die Testbedingungen an reale klimatische Bedingungen anpassen, beispielsweise an Solarzellen-Temperaturen zwischen 15 °C und 75 °C und eine Bestrahlungsstärke von 0 W/m2 bis über 1100 W/m2. Zudem können die Forscher die Wellenlänge und den Einfallswinkel des Lichts variieren. Alle diese Messungen erlauben schließlich einen Vergleich der Leistungsfähigkeit verschiedener Solarzellen. So können Betreiber von Solaranlagen künftig von Kalibrierlaboratorien prüfen lassen, welches Modul für das jeweilige Klima vor Ort am besten geeignet ist.

Bei herkömmlichen (lampenbasierten) DSR-Verfahren wird Weißlicht mittels eines sogenannten Monochromators in einzelne Wellenlängen zerlegt und in kleinen Portionen durch eine Optik auf die Solarzelle gelenkt. So lassen sich alle Farben von ultraviolettem bis infrarotem Licht einstellen. Gleichzeitig wird die Zelle mit weißem Licht bestrahlt, denn nur so werden die für die Messung benötigten 1000 Watt pro Quadratmeter erreicht.

Doch hierbei entsteht ein Problem: Der durch Weißlicht erzeugte Strom ist um bis zu eine Milliarde Mal größer als der durch einfarbiges Licht erzeugte Strom. Bei den Messungen stört dann der große Strom das Signal des kleinen Stroms – man spricht von einem Signal-zu-Rausch-Problem.

Mittels des laserbasierten DSR-Verfahrens ist es den Wissenschaftlern in der PTB gelungen, den Störfaktor je nach Wellenlänge um das 100- bis 10 000fache zu reduzieren. Damit wurde die gesamte Messunsicherheit verbessert – auf den Rekordwert von weniger als 0,4 Prozent. Ein weiterer Vorteil: Bisher konnten nur Referenzsolarzellen einer Größe von 20 mm x 20 mm kalibriert werden. Jetzt lassen sich Zellen mit bis zu 15 cm x 15 cm (6 Zoll) kalibrieren. Von diesem Fortschritt werden vorerst hauptsächlich die Kalibrierlaboratorien profitieren, letztlich aber auch die Technologie. „Denn eine funktionierende globale Kalibrierinfrastruktur ist notwendig für den Erfolg einer Technologie auf dem Weltmarkt“, ist sich Ingo Kröger, Mitarbeiter in der Arbeitsgruppe Solarzellen in der PTB, sicher.
(ms/ptb)

Ansprechpartner in der PTB:
Dr. Stefan Winter, Arbeitsgruppenleiter 4.14 Solarzellen, Telefon: (0531) 592-4140, E-Mail: stefan.winter@ptb.de

Dr. Ingo Kröger, PTB-Arbeitsgruppe 4.14 Solarzellen, Telefon: (0531) 592-4147, E-Mail: ingo.kroeger@ptb.de

Dipl.-Journ. Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
12.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics