Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Platin allein macht nicht glücklich

16.09.2015

Ein Forschungsteam der TU Wien konnte klären, wie ein Platinkatalysator wirkt. Seine ausgezeichneten Eigenschaften erreicht Platin nicht allein, sondern in Kombination mit einem Untergrund aus Eisenoxid.

Dass Platin ein äußerst nützlicher Katalysator ist, weiß man schon lange. Das Edelmetall wird beispielsweise in Fahrzeugkatalysatoren verwendet, um schädliches Kohlenmonoxid in Kohlendioxid umzuwandeln.


Links: Winzige Platin-Nanopartikel auf einer Eisenoxid-Oberfläche. Mitte: H2-Gas führt zu Löchern in der Oberfläche. Rechts: O2-Gas lässt zusätzliche Eisenoxid-Inseln wachsen.

TU Wien


Im Oberflächenforschungslabor an der TU Wien

TU Wien

Winzige Platinkörnchen können Moleküle zerlegen oder festhalten, sodass bestimmte chemische Reaktionen leichter ablaufen. An der TU Wien gelang es nun mit Hilfe von Rastertunnelmikroskopen, das katalytische Verhalten von Platin auf einer Eisenoxid-Oberfläche abzubilden und erstmals direkt zu beobachten, was dabei auf Atom-Ebene vor sich geht. Erstaunlicherweise findet die Reaktion gar nicht auf den Platin-Partikeln statt, entscheidend ist das Zusammenspiel zwischen Platin-Partikeln und dem Untergrund aus Eisenoxid.

Moleküle fangen und oxidieren

Die winzige Nanopartikel, die man für die Katalyse verwendet, bestehen oft bloß aus wenigen Platin-Atomen bestehen. Sie können Oxidationen ermöglichen, indem sie bestimmte Moleküle festhalten und mit Sauerstoff in Kontakt bringen. Kohlenmonoxid (CO) wird auf diese Weise zu Kohlendioxid (CO2) oxidiert, aus Wasserstoffgas (H2) wird Wasser (H2O). Diese Reaktionen sind auch ohne Platin möglich, aber Platin sorgt dafür, dass sie bei viel niedrigeren Temperaturen stattfinden können als sonst.

„Eigentlich hatten wir gedacht, dass diese chemischen Reaktionen direkt auf den Platin-Partikeln stattfinden. Doch die Bilder zeigen eindeutig, dass das nicht der Fall ist“, sagt Prof. Gareth Parkinson. Seit Jahren beschäftigt er sich gemeinsam mit Prof. Ulrike Diebold vom Institut für angewandte Physik der TU Wien mit dem Verhalten kleinster Partikel, die auf Metalloxid-Oberflächen festgehalten werden. Nun konnte das Team nachweisen, dass der Sauerstoff für die chemischen Reaktionen an den Platin-Partikeln nicht von oben aus der Umgebungsatmosphäre kommt, sondern von unten, aus dem Eisenoxid.

Nano-Löcher und wanderndes Eisen

Das Eisenoxid (Fe3O4), auf dem die Platin-Partikel festgehalten werden, hat bemerkenswerte Eigenschaften. Es hat zwar eine regelmäßige Kristallstruktur in der normalerweise jedes Atom brav auf seinem Platz sitzt, doch es erlaubt den eingebauten Eisen-Atomen eine sehr hohe Beweglichkeit, das Eisen kann durch das Material hindurchwandern. Wenn die Platin-Nanopartikel nun Moleküle aus der umgebenden Atmosphäre einfangen und mit Sauerstoff-Atomen aus der Eisenoxid-Oberfläche kombinieren, bleibt ein Überschuss von Eisen-Atomen, die daraufhin tief in das Material hineinwandern. Übrig bleibt eine Lücke in der Oberfläche – und die kann man in den Rastertunnelmikroskop-Aufnahmen deutlich sehen.

Dabei kann eine Kettenreaktion ausgelöst werden: Sobald ein Platin-Nanopartikel durch eine chemische Reaktion ein Loch in der Eisenoxid-Oberfläche erzeugt, stehen an der Kante des Lochs Atome zur Verfügung, die nicht mehr so stark an den Rest des Materials gebunden sind. An dieser Stelle kann die nächste Reaktion viel leichter stattfinden, der Platin-Nanopartikel wird ein Stück weitergeschoben und steht gleich wieder für den nächsten Schritt zur Verfügung. „Wir sehen dann lange Gräben in der Oberfläche, die ein einzelner Platin-Nanopartikel hinterlassen hat“, sagt Ulrike Diebold.

Das Gegenteil passiert, wenn man die Platin und Eisenoxid einer Sauerstoff-Atmosphäre aussetzt. Die Platin-Partikel können dann die Sauerstoff-Moleküle (O2) aufspalten, und die einzelnen Sauerstoff-Atome können daraufhin in die Oberfläche eingebaut werden. Aus dem Inneren des Materials kommen Eisen-Atome nach, und neben dem Platin-Nanopartikel bildet sich eine zusätzliche Eisenoxid-Insel. Statt Löcher werden dann viele kleine Terrassen auf der Oberfläche sichtbar.

Bessere Katalysatoren

Um diese Effekte entschlüsseln zu können, war jahrelange Vorarbeit nötig. In vielen wichtigen Einzelschritten perfektionierte das Oberflächen-Forschungsteam am Institut für Angewandte Physik der TU Wien den Umgang mit Metalloxiden und winzigen Partikeln. In den letzten Jahren konnten immer wieder wichtige Erkenntnisse über die Struktur von Metalloxiden, über die Beweglichkeit von Atomen an ihrer Oberfläche und ihre chemischen Eigenschaften gewonnen werden. Erst dadurch wurde es nun möglich, die chemischen Abläufe bei der Platin-Katalyse sichtbar zu machen und zu erklären.

Durch dieses tiefere Verständnis kann man auch ganz gezielt bessere Katalysatoren herstellen – so zeigt sich etwa, dass die Effizienz von Platin-Katalysatoren durch eine Vtrorbehandlung mit Wasserstoff gesteigert werden kann. Die atomaren Gräben, die sich in der Oberfläche bilden, hindern nämlich die Platin-Nanopartikel daran, zu größeren Partikeln zusammenzukleben und somit an Reaktivität zu verlieren.

Rückfragehinweise:
Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13425
ulrike.diebold@tuwien.ac.at

Prof. Gareth Parkinson
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13473
gareth.parkinson@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/platin/ Weitere Bilder
http://onlinelibrary.wiley.com/doi/10.1002/anie.201507368/abstract Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eisriesen im Labor: Kunststoff hilft HZDR-Forschern, Planeten besser zu verstehen
25.03.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Wettrennen in Sonnennähe: Ionen sind schneller als Atome
22.03.2019 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Feuerwehrmaske mit Datenbrille ermöglicht Navigation in verrauchten Räumen

25.03.2019 | Innovative Produkte

Vermessung der Gedanken beim Speichern von Wissenskonzepten

25.03.2019 | Biowissenschaften Chemie

Eisriesen im Labor: Kunststoff hilft HZDR-Forschern, Planeten besser zu verstehen

25.03.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics