Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plasma-Experiment feiert Jubiläum an Bord der ISS

27.01.2010
Am 27. Januar 2010 beginnt zum 25. Mal eine Serie von Experimenten zu Komplexen Plasmen an Bord der internationalen Raumstation ISS. Physiker am Max-Planck-Institut für extraterrestrische Physik in Garching untersuchen damit grundlegende Prozesse, die ein besseres Verständnis der Vorgänge in Flüssigkeiten und Festkörpern erlauben.

Drei Aggregatszustände der Materie sind jedem bekannt: fest, flüssig oder gasförmig. In unserem Universum dominiert mit 99 Prozent aber ein vierter Zustand: das Plasma. Dieser bildet sich, wenn Gas so stark erhitzt wird, dass sich seine Moleküle in Ionen und freie Elektronen aufspalten.


Abbildung 1: Kosmonaut Oleg Kotov mit dem PK-3 Plus-Labor in MIM-2, dem neuen russischen Docking- und Forschungsmodul, nach dem Aufbau der Experimentapparatur (vorne, in schwarzer Tonne) und des Kontroll-Computers (hinter dem Kosmonauten). (Bild: mit freundlicher Genehmigung von RKK-Energia).


Abbildung 2: Phasentrennung (Tropfenbildung) in einem binären Komplexen Plasma auf der ISS.

Man könnte deshalb denken, dass ein Plasma besonders ungeordnet ist. Forscher am Max-Planck-Institut für extraterrestrische Physik (MPE) haben aber herausgefunden, dass sogenannte „Komplexe“ Plasmen unter besonderen Bedingungen flüssig werden können oder sogar kristallisieren. In diesem Zustand ermöglichen sie ganz neue Einblicke in die Physik von Flüssigkeiten oder Festkörpern. Die Plasmaphysiker können so beispielsweise das Schmelzen und Erstarren (die Kristallisation), die Gitter-Defektbewegung in Kristallen, oder Flüssigkeitseffekte auf der Basis einzelner Atome beobachten.

Komplexe Plasmen bestehen aus winzigen Teilchen (etwa ein Tausendstel Millimeter groß), die sich in einem Plasma befinden und hoch negativ aufgeladen werden. Durch die starke Wechselwirkung zwischen den Teilchen können sich diese in regulären Strukturen, sowohl flüssig als auch fest, anordnen. Da das Schwerefeld der Erde auf diese Vorgänge störend wirkt, werden die Experimente dazu im Weltall durchgeführt.

Die Erforschung Komplexer Plasmen mit dem Labor PKE-Nefedov war 2001das erste naturwissenschaftliche Projekt auf der Internationalen Raumstation ISS und in der Anfangsphase auch das erfolgreichste. Mittlerweile ist das Nachfolgelabor PK-3 Plus bereits seit vier Jahren in Betrieb und liefert wie schon sein Vorgänger einzigartige Ergebnisse. Die jetzt vom 27. bis 29. Januar durchgeführte Serie von neuen Experimenten ist die 25. Mission zur komplexen Plasmaforschung unter Schwerelosigkeit. Mit diesem Experiment wird PK-3 Plus außerdem permanent im neuen ISS-Modul MIM-2 installiert und als dessen erstes wissenschaftliches Experiment betrieben.

Eines der Experimente im PK-3 Plus-Labor beschäftigt sich mit „binären“ Komplexen Plasmen: Bringt man zwei Teilchenarten unterschiedlicher Größe in ein homogenes Hintergrundplasma ein, so sollte man erwarten, dass sich durch die abstoßenden Kräfte beide gut durchmischen. In den bisher auf der ISS unter Schwerelosigkeit durchgeführten Experimenten zeigen die Teilchenwolken allerdings eine klare Phasentrennung der beiden Teilchenarten (siehe Abb. 2).

„Dieses Phänomen ist aus den unterschiedlichsten Systemen, wie beispielsweise molekularen Flüssigkeiten oder kolloidalen Suspensionen gut bekannt und wird seit langem untersucht“, sagt Hubertus Thomas, Wissenschaftler am MPE und Koordinator des PK-3 Plus Experiments. „In komplexen Plasmen kann dies aber erstmalig durch die Bewegung einzelner Partikel untersucht werden, und wir erhoffen uns mit den jetzt gestarteten Experimenten neue Einblicke in die Physik der Phasentrennung.“

Die Erforschung komplexer Plasmen ist somit eine interdisziplinäre, auf grundlegende physikalische Fragestellungen ausgerichtete Forschung. Wie so oft stellt diese allerdings wichtige Weichen für die angewandte Forschung: Die Erkenntnisse und Erfahrungen der Plasma-Experimente im Labor und auf der ISS führten zu einem ganz neuen Zweig in der Medizin, der sogenannten Plasmamedizin. Hier wird derzeit in einer klinischen Studie untersucht, wie Plasmen zur kontaktfreien Sterilisierung von Wunden, zur Desinfizierung von Händen im Klinikbereich oder zur Behandlung von Parodontose eingesetzt werden können.

Danksagung

Die jahrelange, kontinuierliche Forschung an Bord der ISS ist nur möglich durch die bilateralen Übereinkünfte mit Russland. Das MPE-Partnerinstitut in Moskau, das „Joint Institute for High Temperatures“ der Russischen Akademie der Wissenschaften, ist maßgeblich an diesem Erfolg beteiligt, indem es die notwendigen Ressourcen und Logistik von russischer Seite zur Durchführung der komplexen Plasmaforschung auf der ISS sicherstellt. Der deutsche Beitrag, gefördert von der Raumfahrt-Agentur des Deutschen Zentrums für Luft und Raumfahrt e. V. mit Mitteln des Bundesministeriums für Wirtschaft und Technologie, bestand im Bau und Test eines weltraumtauglichen Labors für die Plasmakristall (PK)-Forschung.

Plasmamedizin-Forschungsgruppe am MPE:
http://www.mpe.mpg.de/theory/plasma-med/index.html
Dr. Hubertus Thomas
Max-Planck-Institut für extraterrestrische Physik Tel.: +49 89 30000-3838
E-Mail: thomas@mpe.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für extraterrestrische Physik
Tel.: +49 89 30000-3980
E-Mail: hanneh@mpe.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de/Highlights/PR20100127/text-d.html
http://jiht.ru/
http://suzymchale.com/ruspace/mim2.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

nachricht Rätsel gelöst: Das Quantenleuchten dünner Schichten
15.10.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

17.10.2019 | Biowissenschaften Chemie

Was unter dem Yellowstone-Vulkan passiert

17.10.2019 | Geowissenschaften

Für höhere Reichweiten von E-Mobilen: Potentiale von Leichtbauwerkstoffen besser ausschöpfen

17.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics