Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physikern genügt eine billionstel Sekunde zur Kontrolle blitzschneller Quantenbits

14.11.2016

Quantencomputer, die bestimmte Probleme im Vergleich zu heutigen Rechnern um ein Vielfaches effizienter lösen können, stecken technisch noch in den Kinderschuhen. Diejenigen Abläufe in der Quantenwelt präzise zu steuern, die Informationen speicher- und lesbar machen, ist außerordentlich herausfordernd. Physikern ist es nun gelungen, ein Quantenbit, das als Grundlage für die Informationsspeicherung dient, blitzschnell und vollständig zu kontrollieren. Da Quantenbits sehr instabil und kurzlebig sind, mussten sie dafür einen Laserpuls nutzen, der nur eine billionstel Sekunde lang ist. Die Methode haben sie in der heutigen Ausgabe des Fachmagazins Nature Communications beschrieben.

Quantencomputer versprechen Lösungen für Rechenprobleme, die heutige, konventionelle Großrechner noch in die Knie zwingen oder ihnen zumindest extrem lange Rechenzeiten abverlangen. Ein Quantencomputer kann bestimmte mathematische Probleme erheblich effizienter lösen als heutige Rechner und so z.B. für Simulationen im Bereich der Wirkstoffentwicklung oder Materialforschung von unschätzbarem Wert sein.


Die grafische Darstellung zeigt, wie ein Laserpuls das Farbzentrum im atomaren Gitter des Diamants, ein Silizium-Atom (gelb) und zwei Fehlstellen (grau), trifft.

Grafik: AG Becher


Doktorand Jonas Becker am Laser, dessen ultrakurze Pulse von einer billionstel Sekunde Dauer ein Quantenbit kontrollieren können.

Foto: AG Becher

Dahinter steckt die Informationsverarbeitung mit Qubits Nehmen die Bits in heutigen Rechnern die Zustände 0 oder 1 ein, können Quantenbits beide Zustände gleichzeitig, einen so genannten Überlagerungszustand, einnehmen. Auf diese Weise können Rechenoperationen in Quantencomputern um ein Vielfaches schneller ablaufen – theoretisch.

Denn noch ist die Kontrolle solcher Quantenbits extrem schwierig. Das liegt unter anderem an der sehr kurzen Zeitspanne, in denen ein Quantenbit zwei Zustände gleichzeitig innehat. Diese so genannte Kohärenzzeit beträgt bei den Quantenbits, die Saarbrücker Physiker erforschen, gerade einmal 45 Nanosekunden, das sind 45 milliardstel Sekunden. Dennoch ist es den Saarbrücker Forschern nun gelungen, ein Quantenbit auch in dieser extrem kurzen Zeitspanne vollständig zu kontrollieren.

Dazu nutzte Doktorand Jonas Becker aus Christoph Bechers Team spezielle Laser, mit denen er gezielt beliebige Überlagerungszustände in einem sogenannten Silizium-Fehlstellen-Farbzentrum (SiV), das als Quantenbit fungiert, erzeugen konnte. „Aufgrund dessen spezieller elektronischer Struktur konnten wir ultrakurze Laserpulse von nur knapp einer Pikosekunde, das ist eine billionstel Sekunde, zur Kontrolle zu nutzen. Dies erlaubt Quanteninformationsverarbeitung mit extrem hoher Geschwindigkeit und ermöglicht es, tausende von Rechenoperationen innerhalb der Kohärenzzeit des SiV durchzuführen“, erklärt Becker.

Das Silizium-Fehlstellen-Farbzentrum ist ein gewollt eingebauter „Fehler“ in der atomaren Gitterstruktur eines ansonsten hochreinen künstlichen Diamanten, der aus reinem Kohlenstoff besteht. Statt des gewohnten Kohlenstoffatoms befindet sich an einer Stelle des Gitters ein Silizium-Atom. Im Gegensatz zum Diamant selbst wechselwirken solche Defekte oftmals sehr stark mit Licht. Daher ist es möglich, den internen Quantenzustand dieser Zentren mithilfe von Lasern gezielt zu verändern und auf diese Weise Information zu speichern.

„Das Silizium-Fehlstellen-Farbzentrum in Diamant ist ein sehr vielversprechender Kandidat für Anwendungen der Quantentechnologien“ erklärt Jonas Becker. „Wir können viele solcher Zentren auf kleinstem Raum durch Beschuss eines hochreinen Diamanten mit einem Teilchenbeschleuniger erzeugen. Die sehr guten optischen Eigenschaften des Zentrums erlauben zudem eine effiziente optische Vernetzung der Defekte und die Kontrolle einzelner SiVs in Systemen mit mehreren Quantenbits, da wir die Laser mit hoher räumlicher Auflösung auf einzelne Zentren fokussieren können“, so Becker weiter.

In zukünftigen Arbeiten können die hier entwickelten Kontrolltechniken genutzt werden, um konkrete Bausteine für Quantenkommunikations-Anwendungen zu realisieren, wie etwa Systeme zum Speichern von Quanteninformation sowie Schnittstellen zwischen Quantenbits und Licht.

Hintergrund Quantentechnologie:
Zugrundeliegendes Prinzip der Quantentechnologie ist, dass ein Teilchen (z.B. ein Atom, Elektron, Lichtteilchen) zwei Zustände gleichzeitig einnehmen kann. Diese Zustände nennt man auch Überlagerungszustände. Auf die Computertechnologie übertragen bedeutet das, dass die Bits, aus denen eine Information auf einem normalen Computer besteht, die Zustände 1 oder 0 haben können, auf einem Quantencomputer hingegen die Zustände 1 und 0 gleichzeitig, in jeder beliebigen Kombination. Solche Quantenbits oder Qubits sind die Grundlage eines Quantencomputers. Rechnen kann man beispielsweise mithilfe von Atomen als Speichereinheit, indem man sie mit Laserlicht anregt und ihren Quantenzustand gezielt manipuliert. Eine Rechenoperation kann nun auf beiden Anteilen des Überlagerungszustandes (1 und 0) gleichzeitig oder parallel stattfinden. Ein Quantencomputer kann zum Beispiel in derselben Zeit, in der ein herkömmlicher 32-Bit-Rechner einen seiner 2 hoch 32 möglichen Zustände verarbeitet, parallel alle diese Zustände verarbeiten. Der Quantencomputer rechnet also um ein Vielfaches schneller als ein normaler Computer. Neben geeigneter Hardware setzt die Quanteninformationsverarbeitung zusätzlich auch die Entwicklung von neuen Rechenvorschriften (Algorithmen) voraus, um die Vorteile der Quantenrechner vollständig ausreizen zu können.

Zur AG Christoph Becher:
Am Lehrstuhl des Professors für Quantenoptik entwickeln die Physiker Technologien für die Quantenkommunikation, beispielsweise neuartige Lichtquellen mit künstlichen Atomen in Diamant, Schnittstellen zwischen Quantenbits in Diamant und Licht sowie Frequenzwandler, die Lichtteilchen in einen anderen Wellenlängenbereich umsetzen können. Die AG Becher ist einer von sechs Lehrstühlen und Forschergruppen, die den Schwerpunkt Quantentechnologien der Universität des Saarlandes bilden.

Die Studie „Ultrafast all-optical coherent control of single silicon vacancy colour centres
in diamond“ ist am 14. November in der Fachzeitschrift Nature Communications erschienen: DOI:10.1038/ncomms13512.

Weitere Informationen:
Prof. Dr. Christoph Becher
Tel.: (0681) 302 2466
E-Mail: christoph.becher@physik.uni-saarland.de

Jonas Becker, M.Sc.
Tel.: (0681) 302 3216
E-mail: j.becker@physik.uni-saarland.de

Weitere Informationen:

http://www.nature.com/articles/ncomms13512

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Verzerrte Atome
06.11.2019 | Max-Planck-Institut für Kernphysik

nachricht Rastertunnelmikroskop zeigt Magnetismus in atomarer Auflösung
04.11.2019 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verzerrte Atome

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: Weltweit erster Nachweis von strominduzierten Kräften zwischen zwei Molekülen

Einem Forscherteam um Professor Jörg Kröger, Leiter des Fachgebietes Experimentalphysik der TU Ilmenau, ist es in enger Zusammenarbeit mit theoretischen Physikern der Technischen Universität Dänemark gelungen, strominduzierte Kräfte in einem Kontakt aus genau zwei C60-Molekülen nachzuweisen. Die erzielten weltweit einzigartigen Ergebnisse sind bedeutsam für das grundlegende Verständnis kleinster elektrischer Kontakte und damit ihre Anwendung in miniaturisierten elektronischen Bauelementen. Sie wurden in der jüngsten Ausgabe der renommierten Fachzeitschrift „Nano Letters“ veröffentlicht.

In ihrem Artikel „Nonequilibrium Bond Forces in Single-Molecule Junctions“ zeigen die Wissenschaftler auf, dass die strominduzierten Kräfte deutlich...

Im Focus: Chemische Photokatalyse geht baden

Licht, Wasser und Seife reichen aus, um stabile chemische Bindungen zwischen Kohlenstoff und Chloratomen zu spalten und für Reaktionen zu aktiveren. Das haben Regensburger Chemiker herausgefunden. Ihre Ergebnisse wurden in der Zeitschrift Nature Catalysis publiziert.

Chemische Synthesen werden meist in organischen Lösemitteln, wie z. B. Alkohol, durchgeführt.

Im Focus: Gedächtniseffekt auf Einzelatom-Ebene

Eine internationale Forschungsgruppe hat an einem künstlichen Riesenatom neue Quanteneigenschaften beobachtet und ihre Ergebnisse nun im hochrangigen Fachjournal Nature Physics veröffentlicht. Das untersuchte Quantensystem weist offenbar ein Gedächtnis auf – eine neue Erkenntnis, die man für den Bau eines Quantencomputers nutzen könnte.

Die Forschergruppe aus deutschen, schwedischen und indischen Wissenschaftlern hat ein künstliches Quantensystem untersucht und dabei neue Eigenschaften...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren und Recht

06.11.2019 | Veranstaltungen

Hochentropie-Legierungen für heiße Turbinen und unermüdliche Pressen

05.11.2019 | Veranstaltungen

Herrenhausen Late: „It’s Laser-Time! Über die Vorzüge gebündelten Lichts“

04.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zellen unter Spannung

06.11.2019 | Informationstechnologie

Autonomes Fahren: Staffelübergabe zwischen Fahrer und Autopilot funktioniert

06.11.2019 | Interdisziplinäre Forschung

Automatisiertes Fahren und Recht

06.11.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics