Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker nutzen winzige Diamanten als Lichtquelle

17.06.2013
Moderne Kommunikationstechnologie basiert darauf, dass Lichtimpulse durch Glasfaserkabel übertragen werden.

An die Stelle von Lichtimpulsen, die aus „Bündeln“ von Lichtteilchen bestehen, sollen in Zukunft einzelne Lichtteilchen als Informationsträger treten – was unter anderem eine vollständig abhörsichere Datenübertragung in der Quantenkommunikation ermöglicht.


Das Bild zeigt den Aufbau der neuartigen Lichtquelle der Saarbrücker Physiker um Professor Becher. In der Mitte der Apparatur befindet sich einer der beiden Spiegel. Auf diesem Spiegel aufgebracht sind die winzigen Diamanten, die mit einem grünen Lichtstrahl beleuchtet werden. Direkt daneben liegt die Glasfaser mit dem eingebauten zweiten Spiegel (rechts im Bild), die die von den Diamanten erzeugten Lichtteilchen transportiert. AG Becher

Derzeit arbeiten Forscher an alltagstauglichen Lichtquellen, die einzelne Photonen emittieren. Physiker um Professor Christoph Becher von der Saar-Uni nutzen hierfür Nanodiamanten und haarfeine Glasfasern. In einer neuen Studie stellen sie den Aufbau dieser Lichtquelle vor.

Winzig klein sind die Diamanten, die die Saarbrücker Forscher für ihre Experimente verwenden: weniger als 100 Nanometer groß – das entspricht etwa einem Tausendstel eines Haardurchmessers. Und dabei haben es die Physiker nicht auf die lupenreinen, sondern auf die verunreinigten Edelsteine abgesehen. „Für unsere Arbeiten brauchen wir Diamanten, die einen speziellen Einschluss, genauer gesagt, einen Defekt aufweisen“, erklärt Christoph Becher, Professor für Experimentalphysik an der Universität des Saarlandes.

„Dieser besteht aus einem Stickstoffatom und einer angrenzenden Leerstelle in der Gitterstruktur des Diamanten. Er wird auch Farbzentrum genannt.“ Bestrahlt man die Nanodiamanten nun mit einem Laser, beginnen die Farbzentren Licht auszusenden – ebenso wie es Atome tun. „Dieses Licht verhält sich so, als ob es von einem einzelnen Atom stammen würde und besteht aus der gewünschten Abfolge einzelner Lichtteilchen“, sagt Becher weiter

Die Saarbrücker Physiker haben diese in Forscherkreisen bekannte Lichtquelle nun weiterentwickelt. Hierfür haben sie einen Nanodiamanten zwischen zwei Spiegeln platziert. Die beiden sich gegenüber liegenden Spiegel bilden einen Lichtspeicher, in dem das Licht über 1.000 Mal hin- und herreflektiert wird, bevor es durch einen der Spiegel entweichen kann. „Die intensive Wechselwirkung des gespeicherten Lichts mit dem Farbzentrum im Nanodiamanten führt dazu, dass einzelne Lichtteilchen mit genau definierten Eigenschaften und mit hoher Effizienz ausgesandt werden. In gewissen Grenzen kann man sich dabei auch die Farbe des Lichtes aussuchen“, berichtet der Physik-Professor. Je kleiner die Spiegel sind, und umso geringer ihr Abstand, desto intensiver ist die Wechselwirkung im Lichtspeicher und desto besser lassen sich die Eigenschaften der einzelnen Lichtteilchen kontrollieren.

Das Besondere beim Versuchsaufbau der Saarbrücker Physiker ist die Anordnung der Spiegel: Einer der Spiegel sitzt direkt auf der Spitze einer haardünnen Glasfaser. „Die einzelnen Lichtteilchen werden auf diese Weise direkt in eine Faser ausgesandt – also dorthin, wo man sie für die Datenübertragung gerne haben möchte“, erklärt Roland Albrecht, Doktorand bei Professor Becher. „Zudem liegt der Vorteil unseres Aufbaus darin, dass er bei Raumtemperatur und ohne großen Apparateaufwand funktioniert. Er bietet somit Potential, ihn praktisch einzusetzen.“

Im nächsten Schritt möchten die Saarbrücker Forscher die Spiegel weiter verkleinern, sodass möglichst alle ausgesandten Lichtteilchen in der Glasfaser gesammelt werden können. Ferner versuchen sie den Nanodiamanten und die Glasfaser-Lichtspeicher auf Temperaturen nahe dem absoluten Temperaturnullpunkt abzukühlen. „Dann verändern sich die Eigenschaften des Systems so, dass Quanteninformation zwischen dem Farbzentrum im Diamanten und den einzelnen Lichtteilchen ausgetauscht werden kann – die Schnittstelle für einen zukünftigen Quantencomputer oder die Übertragung von Quanteninformation über lange Strecken“, erklärt Becher.

Die Arbeit der Saarbrücker Wissenschaftler ist unter anderem im Rahmen des Verbundprojekts QuOReP (Quanten-Repeater-Plattform mit Methoden der Quantenoptik), das vom Bundesministerium für Bildung und Forschung gefördert wird, entstanden. Die winzigen Spiegel für den Versuchsaufbau wurden in Zusammenarbeit mit Professor Jakob Reichel an der École normale supérieure in Paris hergestellt.
Die Studie „Coupling of a single NV-center in diamond to a fiber-based microcavity“ wurde in Physical Review Letters veröffentlicht. DOI: 10.1103/PhysRevLett.110.243602

Fragen beantworten:

Prof. Dr. Christoph Becher
Experimentalphysik
Tel.: 0681 302-2466
E-Mail: christoph.becher(at)physik.uni-saarland.de

Diplom-Physiker Roland Albrecht
Experimentalphysik
Tel.: 0681 302-3418
E-Mail: r.albrecht(at)physik.uni-saarland.de

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics