Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entwickeln Technologie, um Solarzellen schneller zu fertigen

17.10.2012
Dass Gegenlicht auf einer Brille keine störenden Reflexionen hervorruft, dass ein Kolben in einem Motor reibungsarm hin- und hergleiten kann, dass eine Glasplatte kratzfest ist und dass Solarzellen Sonnenlicht in Strom verwandeln – all das ist nur möglich durch hauchdünne Beschichtungen, die mit Hilfe eines Plasmas aufgetragen werden.
Ein Plasma ist ein komplexer Cocktail aus geladenen Teilchen, und ihn gezielt zu steuern, um Fahrzeugteile zu beschichten oder Solarzellen herzustellen, ist schwierig. Physiker der Ruhr-Universität Bochum haben einen neuen Weg gefunden, das vielschichtige Zusammenspiel der Plasmakomponenten zu kontrollieren und so schnellere Beschichtungen zu ermöglichen.

Darüber berichtet RUBIN Transfer, die aktuelle Sonderausgabe des RUB-Wissenschaftsmagazins.

RUBIN mit Bildern zum Herunterladen finden Sie im Internet unter: http://www.rub.de/rubin

Dünne Schichten für funktionierende Oberflächen

Führt man einem festen Stoff Energie zu, zum Beispiel durch Erhitzen, wird er erst flüssig, dann gasförmig und letzten Endes ein Plasma – die eingespeiste Energie löst erst die Bindungen zwischen den einzelnen Atomen und zersetzt schließlich sogar die Atome selbst Beschießt man mit einem solchen Teilchengemisch eine Oberfläche, lagern sich Bestandteile des Plasmas in nur wenige Nanometer dünnen Schichten ab und verändern die Eigenschaften der Oberfläche. So machen Plasmen es möglich, Solarzellen herzustellen: mit dünnen Schichten Silicium mit gelegentlichen Fremdatomen.
Mit einem Trick gelingt das Feintuning

Essentiell für Beschichtungen ist, wie viele Ionen auf die zu beschichtende Oberfläche treffen und mit welchem Schwung, das heißt Ionenfluss und Ionenenergie. Unglücklicherweise hängen diese beiden Größen eng zusammen – beeinflusst man die eine, ändert sich auch die andere. Wissenschaftlern um Prof. Dr. Uwe Czarnetzki vom Lehrstuhl für Experimentalphysik, insbesondere Plasma- und Atomphysik an der Ruhr-Universität ist es geglückt, mit einem raffinierten Trick Ionenenergie und Ionenfluss unabhängig voneinander einzustellen.

Ein Ungleichgewicht hilft bei der Steuerung

Um das Plasma zu steuern, ändern sie die angelegte Spannung, aber nicht bloß die Amplitude oder die Frequenz, sondern die ganze Schwingung: Statt der gewöhnlichen Wechselspannung speisen sie zwei Schwingungen ein, einmal in der Grundfrequenz von 13,56 Megahertz, einmal mit einer Vielfachen dieser Grundfrequenz. Wenn sich diese beiden Spannungsverläufe überlagern, schwingt die Spannung nicht mehr wie zuvor gleichmäßig hin und her, sondern sie ist im Maximum nicht mehr genau so hoch wie im Minimum. Das Plasma reicht an die eine Elektrode nicht mehr so nah heran wie an die andere, kann also nicht gleichmäßig auf beiden Seiten Elektronen abgeben. Um das zu kompensieren, bildet sich an einer Elektrode im Reaktor plötzlich eine Gleichspannung aus, der sogenannte Bias. Dieses Phänomen haben die Bochumer Elektrischer Asymmetrie-Effekt getauft, und es lässt sich nutzen, um die Ionenenergie für die Beschichtung einzustellen. Die Gleichspannung des Bias verschiebt die Potentiale im Plasma und sorgt so dafür, dass an einer Elektrode die Ionenenergie steigt, an der anderen aber absinkt. Dies funktioniert auch, wenn die Entladung in ihrer Geometrie völlig symmetrisch ist. Dies ist insbesondere in der industriellen Anwendung der Fall, wo oft eine Entladung zwischen zwei einige Quadratmeter großen Platten im Abstand von nur wenigen Zentimetern abläuft. Bisher musste man damit leben, dass damit an beiden Elektroden genau das Gleiche passierte. Ohne am Aufbau etwas zu ändern kann nun rein elektrisch über die Phase die Symmetrie gebrochen werden. Die Energie der Ionen am Substrat wird damit auf bequeme Weise regelbar.

Themen in RUBIN Transfer

In RUBIN Transfer finden Sie darüber hinaus folgende Themen: Kohlenstoffchemie: Grübchen graben auf der Nanoskala; Mineral-Tuning für die Industrie; DNA-Impfung gegen „Kinderschnupfen-Virus“; Raffinierte Schwingungen steuern Plasma, Sprachakrobaten im Einsatz für moderne Amtssprache; Messstation funkt Wasserstand; Elektromobilität: Ein Auto im Schrank; Der perfekte Trainingsplan; Personalisierte Medizin: Die Arznei, die „passt“; Wissensmanagement: Virtuelle Schubladen; Damit jede Schraube funktioniert; Mit Hochspannung zum Quantencomputer. RUBIN Transfer ist bei der Verwertungsgesellschaft der RUB rubitec GmbH (Tel. 0234/32-11950, rubitec@rub.de) zum Einzelpreis von 6,- Euro erhältlich und online unter http://www.rub.de/rubin.
Weitere Informationen

Prof. Dr. Uwe Czarnetzki, Lehrstuhl Experimentalphysik, Fakultät für Physik und Astronomie der RUB, 44780 Bochum, Tel. 0234/32-27218, E-Mail: Uwe.Czarnetzki@ep5.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/rubin/rubin-transfer/beitraege/beitrag4.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
14.06.2019 | Technische Universität München

nachricht Ins Innere von Materialien blicken
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics