Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Saar-Uni zeigen, wie man empfindliche Quantensysteme stabilisiert

03.12.2015

Die Quantenphysik birgt technologische Möglichkeiten, die mit heutigen Technologien nicht zu vergleichen sind: Quantencomputer beispielsweise könnten Probleme viel schneller als heutige Rechner lösen. Die Crux ist aber, dass Quanten-Systeme höchst instabil sind. Ihren Zustand so zu halten, dass sie nutzbar sind, ist derzeit eine der größten Herausforderungen der Physik. Den Saarbrücker Physikern Giovanna Morigi und Jürgen Eschner ist es gemeinsam mit dem Physik-Nobelpreisträger von 2012, David Wineland, und seinen Mitarbeitern gelungen, eine Methode zu beschreiben, die ein solches System stabilisiert. Sie haben diese Methode in der Zeitschrift „Physical Review Letters“ veröffentlicht.

Der Quantenphysik liegt ein Prinzip zugrunde, das für Nicht-Physiker schwer nachzuvollziehen ist: Ein Teilchen, zum Beispiel ein Lichtteilchen (Photon) oder ein Atom, befindet sich nicht in einem eindeutigen Zustand, sondern kann zu einem bestimmten Zeitpunkt zwei Zustände zugleich einnehmen.

Auf die Computertechnologie übertragen bedeutet das zum Beispiel, dass die Bits, aus denen eine Information auf einem normalen Computer besteht, die Zustände 1 oder 0 haben können, auf einem Quantencomputer hingegen die Zustände 1 und 0 gleichzeitig, in jeder beliebigen Kombination. Ein Quantencomputer kann in derselben Zeit, in der ein herkömmlicher 32-Bit-Rechner einen seiner 2 hoch 32 möglichen Zustände verarbeitet, parallel alle diese Zustände verarbeiten.

Den Zustand eines Systems solcher Teilchen nennen Physiker „verschränkt“. Das Quantensystem hat dabei eine wichtige Eigenschaft: Untersucht man den Zustand eines Teilchens im System, kennt man automatisch den Zustand des gesamten Systems. Die Teilchen in diesem verschränkten Zustand zu halten, ist allerdings sehr schwierig und eine der größten Herausforderungen für die zeitgenössische Physik. Bereits winzigste äußere Einflüsse können das Quantensystem zerstören, und die vorteilhaften Eigenschaften sind dahin.

„Methoden zur robusten Erzeugung solcher Zustände sind also sehr gesucht. Dies ist vergleichbar mit einer Konstruktionsvorschrift für ein Leichtbauboot, welches auch bei schwerem Sturm ruhig seinen Kurs hält”, erklären Giovanna Morigi (Professorin für Theoretische Quantenphysik an der Universität des Saarlandes) und Jürgen Eschner (Professor für Quanten-Photonik, ebenfalls Universität des Saarlandes). Gemeinsam mit dem Physik-Nobelpreisträger David Wineland (National Institute of Standards and Technology, Boulder/Colorado) und weiteren Physikern beschreiben sie nun ein System aus vier Atomen, das in einen verschränkten Zustand übergeht und stabil dort bleibt.

Die Forscher schlagen vor, das Quantensystem mit einer gezielten Sequenz von Laser-Impulsen energetisch anzuregen. Das alleine würde aber nicht reichen, um die Verschränkung stabil zu halten. „Gleichzeitig wird das System mit einem weiteren Laser gekühlt“, ergänzen die Wissenschaftler, die gemeinsam ein Forschungssemester bei David Wineland verbracht haben. Der besondere Effekt der Methode besteht darin, dass die Laserkühlung, welche normalerweise die Verschränkung zunichte macht, hier im Zusammenwirken mit den Pulsen den umgekehrten Effekt entwickelt, diese zu stabilisieren.

Die Erkenntnisse, die das internationale Forscherteam gewonnen hat, sind wichtige Grundlagen für weiterführende Forschungen: Die Gruppe von David Wineland entwickelt Atomuhren, die Quantentechnologien wie eben die Verschränkung mehrerer Atome zur präziseren Zeitmessung ausnutzen. Die Gruppen von Giovanna Morigi und Jürgen Eschner arbeiten an Techniken zur Quantenkommunikation, welche auf der Verschränkung zwischen Atomen und Photonen beruhen.

Weitere Informationen:
Prof. Dr. Jürgen Eschner
Tel. (0681) 30258016
E-Mail: juergen.eschner@physik.uni-saarland.de

Prof. Dr. Giovanna Morigi
Tel.: (0681) 30257472
E-Mail: giovanna.morigi@physik.uni-saarland.de

Der Aufsatz „Dissipative Quantum Control of a Spin Chain“ erschien am 13. November in der Fachzeitschrift „Physical Review Letters“.

DOI: http://dx.doi.org/10.1103/PhysRevLett.115.200502

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.115.200502

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics