Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln

23.10.2019

Technische Systeme und Geräte wie Computer, Handys, Flugzeuge und Autos werden alle durch Mikroelektronik gesteuert, die auf der elektrischen Ladung von Teilchen basiert. Diese elektronischen Komponenten sind allerdings empfindlich, da für den Fluss der geladenen Elektronen eine komplexe Schaltung nötig ist. Stark vereinfachen könnte man dies in vielen Fällen, wenn man stattdessen eine andere Eigenschaft von Elektronen nutzen könnte: den Elektronenspin. Dieser Eigendrehimpuls eines Elektrons ist eine unveränderliche Größe, so dass er ebenso verlässlich als Informationsspeicher dienen könnte.

Wissenschaftler um Professor Uwe Hartmann von der Universität des Saarlandes möchten kostengünstige Mikroelektronik entwickeln, die auf diesem Grundprinzip basiert. Das Bundesforschungsministerium fördert seine Arbeitsgruppe und die Projektpartner aus ganz Deutschland nun mit rund 1,6 Millionen Euro.


Öffnet man heute ein beliebiges technisches Produkt, sei es ein Handy, ein Computer oder auch ein Flugzeug, sieht eines oft ähnlich aus: Die Elektronik unter den Hüllen und Verkleidungen.

Grüne Platinen, auf denen Schaltungen miteinander verbunden sind, über die positiv oder negativ geladene Teilchen hin- und herflitzen und so Informationen von A nach B transportieren.

Diese Teilchen setzen die Befehle der Nutzer in Taten um, also etwa „Anruf bei Mutti“ oder „Sinkflug einleiten“. Dieses elektronische Grundprinzip ist allen technischen Geräten heute zu eigen. Alle funktionieren sie nach dem Prinzip, dass Strom von A nach B fließt.

Zwar ist es mittlerweile möglich, diese Eigenschaft viele Jahre oder gar Jahrzehnte aufrecht zu erhalten. Aber nach einer gewissen Zeit schwächt sich der Elektronenfluss ab. Auf einem lange nicht genutzten USB-Stick äußert sich dies dann zum Beispiel, indem Informationen verloren gehen.

Anders verhalten sich Bauteile, die mit dem Prinzip des Elektronenspins arbeiten, den man sich als eine Art feststehenden Drehimpuls eines Elektrons vorstellen kann. Ähnlich wie ein angeschnittener Tischtennisball oder wie die Drehung der Erde rotiert das Elektron, allerdings ohne dass der Drehimpuls schwächer wird wie bei den genannten Beispielen.

„Der Spin kann über sehr lange Zeiträume erhalten bleiben“, erklärt Uwe Hartmann, Experimentalphysiker und Professor für Nanostrukturforschung und Nanotechnologie an der Universität des Saarlandes. Außerdem ist er deutlich unempfindlicher gegen äußere Einflüsse.

„Ein Flugzeug beispielsweise, das in zehn Kilometern Höhe fliegt, muss gegen die starke ionisierende Strahlung in dieser Höhe abgeschirmt werden, damit seine Elektronik nicht ausfällt“, erklärt der Physiker.

Wäre statt der Elektronik hingegen so genannte Spintronik verbaut, wäre dies nicht nötig, da der Elektronenspin von der Strahlung in dieser Höhe nicht beeinflusst wird.

Um die Grundlagen solcher spintronischer Bauelemente weiter zu verstehen und einen Sensor-Prototypen zu entwickeln, haben sich daher nun die Arbeitsgruppen mehrerer deutscher Hochschulen und Industrieunternehmen zusammengeschlossen.

Im Programm „Forschung für neue Mikroelektronik (ForMikro)“ des Bundesforschungsministeriums wird das Konsortium, das von Uwe Hartmann koordiniert wird, seit Oktober 2019 mit rund 1,6 Millionen Euro gefördert, von denen 740.000 Euro an die Universität des Saarlandes fließen.

Zwar gibt es bereits spintronische Bauteile, zum Beispiel hochempfindliche Sensoren. Diese kosten allerdings aktuell deutlich über 100 Dollar pro Stück und sind somit für einen massenhaften Gebrauch nicht geeignet. Der Grund ist eine komplizierte Mikrowellen-Elektronik, die zum Betrieb der Sensoren benötigt wird.

„Wir wollen nun erstmals einen integrierten Schaltkreis aus verschiedenen Elementen bauen, der gar keine komplizierte Schalt-Elektronik mehr braucht. Unser Ziel ist ein Prototyp, der nur noch eine kleine Batterie benötigt, um zu funktionieren“, erläutert Uwe Hartmann das Ziel des Forschungsverbundes, der bis September 2023 gefördert wird.

Später könnten sich solche spintronischen Bauteile für den großflächigen Gebrauch in Alltagstechnik eignen, zum Beispiel als kostengünstige Sensoren in Handys, als Mess-Sensoren für wissenschaftliche oder medizinisch-diagnostische Anwendungen.

Auch für Zukunftstechnologien könnten die spintronischen Bauteile hilfreich sein. Bei allen bekannten theoretischen Konzepten und Laborerfahrungen: „Irgendjemand muss die Elektronik der Zukunft ja auch mal in Form von Massenprodukten bauen“, stellt Uwe Hartmann pragmatisch fest. Und derzeit hätten zwar die Asiaten und die Amerikaner in der Halbleitertechnologie einen großen Vorsprung, da Europa hier den Anschluss verpasst habe. Mit Fortschritten in der Spintronik hingegen könnte sich das Blatt auch wieder wenden. „Dann werden die Karten neu gemischt“, prognostiziert Hartmann.

Das Projekt „Erforschung neuartiger Magnetsensoren auf Basis spintronischer Effekte“ wird im Rahmen des BMBF-Programms „Forschung für neue Mikroelektronik (ForMikro)“ für vier Jahre mit 1,6 Millionen Euro gefördert. Neben der Universität des Saarlandes sind außerdem beteiligt: Universität Halle-Wittenberg, Universität Bielefeld, Sensitec GmbH, Singulus Technologies AG, SENSYS GmbH.

Kontakt:
Prof. Dr. Uwe Hartmann
Tel.: (0681) 302-3799 oder -3798
E-Mail: u.hartmann@mx.uni-saarland.de

Gerhild Sieber | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

nachricht Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
09.07.2020 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics