Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photovoltaik mit Nanoröhren

06.11.2012
Forscher der Universität Würzburg sind maßgeblich am neuen europäischen Verbundprojekt POCAONTAS beteiligt. Dabei sollen aus Kohlenstoff-Nanoröhren neue Materialien für die Photovoltaik entwickelt werden. Die Europäische Union fördert das Vorhaben mit 3,5 Millionen Euro.
Für die Bewältigung der Energiewende spielt die Umwandlung von Sonnenenergie in elektrische Energie eine herausragende Rolle. Herkömmliche Silizium-Solarzellen erreichen mittlerweile zwar hohe Wirkungsgrade, aber ihre Herstellung ist sehr teuer und mit großem Energieaufwand verbunden. Es liegt also nahe, nach Alternativen zu suchen.

Eigenschaften des Materials versprechen Erfolg

Ein neuer Forschungsverbund geht darum der Frage nach, welche Materialien sich für die Photovoltaik der Zukunft eignen. Winzige Röhren aus reinem Kohlenstoff, die zu größeren Verbänden angeordnet sind, scheinen dafür heiße Kandidaten zu sein: „Dieses Material hat viele Eigenschaften, die eine hoch effiziente Energieumwandlung versprechen“, so Professor Tobias Hertel von der Universität Würzburg.

Interessant für die Photovoltaik ist das Material, weil es sehr stabil ist und über eine außergewöhnlich hohe Elektronenmobilität verfügt. Außerdem hat es ein für die Energieumwandlung geeignetes Lichtabsorptionsspektrum, das mit anderen Materialien nur schwer erzielbar ist.

Die Ziele der Wissenschaftler

„Auf dem Gebiet der organischen Photovoltaik arbeiten wir schon seit Jahren, und doch haben es die ersten Versuche mit den hochwertigen Nanoröhren geschafft, uns zu begeistern und sehr zu motivieren“, erzählt Hertels Würzburger Projektpartner, Professor Vladimir Dyakonov.

Jetzt wollen die Wissenschaftler das Potenzial der Polymer-Verbindungen aus Kohlenstoffnanoröhren für die Photovoltaik besser kennen lernen. Ihr besonderes Augenmerk liegt dabei auf der Entwicklung so genannter funktionaler Kompositsysteme. Deren Eigenschaften sollen dann mit modernsten spektroskopischen Methoden analysiert werden.

Ausbildung junger Wissenschaftler wichtig

Neben der Forschung ist die Ausbildung von Doktoranden und Post-Doktoranden in Wissenschaft und Industrie ein wesentliches Anliegen des Projekts. In Kursen, Industriepraktika und Workshops, die die Projektpartner jeweils vor Ort anbieten, soll der Nachwuchs Fachwissen vermittelt bekommen und auf eine Karriere in der Wissenschaft vorbereitet werden.

Projektpartner und Koordination

Das Projekt trägt den Namen POCAONTAS (Polymer-Carbon Nanotubes Active Systems for Photovoltaics). Beteiligt sind neben den Würzburger Arbeitsgruppen um die Professoren Tobias Hertel (Chemie) und Vladimir Dyakonov (Physik) weitere Forschungsgruppen aus München sowie aus fünf anderen europäischen Ländern. Auch mehrere Firmen, darunter zwei aus Bayern, und die Bayerische Forschungsallianz sind eingebunden. Die Koordination liegt bei Professor Larry Lüer (Madrid).

Die Europäische Union fördert das Projekt ab 1. November 2012 vier Jahre lang mit 3,5 Millionen Euro im Programm „Initial Training Network“. Die Konkurrenz um das Fördergeld ist laut Professor Hertel extrem groß: „Nur wenige als exzellent begutachtete Projekte kommen in den Genuss einer Förderung.“

Kontakt

Prof. Dr. Tobias Hertel, Institut für Physikalische und Theoretische Chemie der Universität Würzburg, T (0931) 31-86300, tobias.hertel@uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modulare OLED-Leuchtstreifen

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, ein Anbieter von Forschung und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik, stellt auf dem International Symposium on Automotive Lighting 2019 (ISAL), vom 23. bis 25. September 2019, in Darmstadt, am Stand Nr. 37 erstmals OLED-Leuchtstreifen beliebiger Länge mit Zusatzfunktionalitäten vor.

Leuchtstreifen für das Innenraumdesign kennt inzwischen nahezu jeder. LED-Streifen sind als Meterware im Baumarkt um die Ecke erhältlich und ebenso oft als...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungsnachrichten

Neue Strukturdaten zu Talin erklären Selbsthemmungs-Mechanismus

20.09.2019 | Biowissenschaften Chemie

Wie Algen pinke Pigmente herstellen

20.09.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics