Perfekte Nanokugeln durch ultrakurze Laserpulse

Aufgeschmolzenes Silicium bildet Nanopartikel aus, die durch die Oberflächenspannung auf ein Empfängersubstrat fliegen. Foto: LZH

Wissenschaftler am LZH konnten erstmals perfekt runde Silicium-Nanopartikel mit einem Durchmesser von 165 nm in geordneten Feldern herstellen. Dies gelang mit einer von ihnen entwickelten Methode, die in Nature Communications in der Ausgabe vom 4. März publiziert wurde.

Bei dieser neuartigen Methode werden ultrakurze Laserpulse genutzt, um Nanopartikel im zwei- und dreistelligen Nanometer-Bereich aus verschiedenen Materialien wie Metallen, Halbleitern und Dielektrika, zu drucken. Diese können anschließend präzise auf einem Empfängersubstrat positio-niert werden.

Nanopartikel haben die einzigartige optische Eigenschaft, nur Licht bestimmter Wellenlängen zu streuen. Mit weißem Licht angestrahlt, erscheinen sie je nach Größe, Form und Wechselwirkung mit ihrer Umgebung in einer bestimmten Farbe. Daher lassen sie sich für verschiedene Anwendungen in Medizin und Sensorik einsetzen.

Partikelbildung durch Oberflächenspannung
Ausgangspunkt für den Herstellungsprozess ist eine dünne Schicht des Materials, aus dem die Nanopartikel gefertigt werden sollen. Diese wird mit einem einzelnen ultrakurzen Laserpuls bestrahlt und aufgeschmolzen. Durch die Oberflächenspannung des geschmolzenen Materials bildet sich eine Nanokugel aus, die sich nach oben weg bewegt und dann von einem Empfängersubstrat aufgefangen wird. Dabei lässt sich die Position der Teilchen auf dem Empfängermaterial mit sehr hoher Genauigkeit einstellen.

Akkurat und kontrollierbar
„Die neue Methode ist die erste, mit der Nanopartikel in bestimmter Größe hergestellt und gleichzeitig präzise positioniert werden können“, erläutert Prof. Dr. Boris Chichkov, Leiter der Abteilung Nanotechnologie. „Sie ist in dieser Hinsicht chemischen Verfahren weit überlegen, bei denen zwar große Mengen Nanopartikel produziert, diese aber nicht an der gewünschten Position platziert werden können.“ Mit der Methode können zwei- oder dreidimensionale geordnete Partikelstrukturen, wie Nanoantennen, Nanolaser und Metamaterialien, realisiert werden.

Von amorph zu kristallin mit zweitem Puls
Die Herstellung von Silicium-Nanopartikeln mit bestimmter Größe ist besonders interessant, da diese besondere optische Eigen-schaften haben: Sie streuen vor allem das sichtbare Licht stark und reagieren dabei neben dem elektrischen Feld des Lichts auch auf das magnetische. Hingegen wechselwirkt bekannte Materie fast ausschließlich mit dem elektrischen Feld. Dabei wird übereinstimmend mit der Mie-Theorie auch das magnetische Licht gestreut. Die gefertigten Siliciumpartikel liegen nach dem Druckprozess in amorpher Phase vor und können mit einem zweiten Laserpuls in die kristalline Phase transformiert werden.
„Die Ergebnisse haben bereits zur Entstehung der neuen For-schungsrichtung Siliciumnanophotonik mit weltweitem Interesse geführt“, so Chichkov. „Die neue Methode wird daher sicherlich viele neue Anwendungen finden.“

Die Untersuchungen fanden statt im Rahmen der wissenschaftlichen Schwerpunktprogramme SPP 1391 „Ultrafast Nanooptics“ sowie dem Transregioprojekt TRR 123 „PlanOS“. Beide Programme werden von der Deutschen Forschungsgemeinschaft gefördert.

Artikel erschienen in Nature Communications | 5:3402 | DOI: 10.1038/ncomms4402

Media Contact

Lena Bennefeld Laser Zentrum Hannover e.V.

Weitere Informationen:

http://www.lzh.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer