Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfekte Nanokugeln durch ultrakurze Laserpulse

16.04.2014

Die Gruppe Nanophotonics des Laser Zentrum Hannover e.V (LZH) hat eine Methode etabliert, mit ultrakurzen Laserpulsen Nanopartikel mit vorgegebenen, reproduzierbaren Größen aus verschiedenen Materialien zu drucken und präzise auf einem Trägermaterial zu platzieren. Im Zuge dessen ist es den Wissenschaftlern erstmals gelungen, perfekt runde Silicium-Nanopartikel mit einem Durchmesser von 165 nm herzustellen und anzuordnen. Die Methode wurde in Nature Communications in der Ausgabe vom 4. März vorgestellt.

Wissenschaftler am LZH konnten erstmals perfekt runde Silicium-Nanopartikel mit einem Durchmesser von 165 nm in geordneten Feldern herstellen. Dies gelang mit einer von ihnen entwickelten Methode, die in Nature Communications in der Ausgabe vom 4. März publiziert wurde.


Aufgeschmolzenes Silicium bildet Nanopartikel aus, die durch die Oberflächenspannung auf ein Empfängersubstrat fliegen.

Foto: LZH


Laser-gedruckte Silicium-Nanopartikel in amorpher (rot) und kristalliner Phase (gelb).

Foto: LZH

Bei dieser neuartigen Methode werden ultrakurze Laserpulse genutzt, um Nanopartikel im zwei- und dreistelligen Nanometer-Bereich aus verschiedenen Materialien wie Metallen, Halbleitern und Dielektrika, zu drucken. Diese können anschließend präzise auf einem Empfängersubstrat positio-niert werden.

Nanopartikel haben die einzigartige optische Eigenschaft, nur Licht bestimmter Wellenlängen zu streuen. Mit weißem Licht angestrahlt, erscheinen sie je nach Größe, Form und Wechselwirkung mit ihrer Umgebung in einer bestimmten Farbe. Daher lassen sie sich für verschiedene Anwendungen in Medizin und Sensorik einsetzen.

Partikelbildung durch Oberflächenspannung
Ausgangspunkt für den Herstellungsprozess ist eine dünne Schicht des Materials, aus dem die Nanopartikel gefertigt werden sollen. Diese wird mit einem einzelnen ultrakurzen Laserpuls bestrahlt und aufgeschmolzen. Durch die Oberflächenspannung des geschmolzenen Materials bildet sich eine Nanokugel aus, die sich nach oben weg bewegt und dann von einem Empfängersubstrat aufgefangen wird. Dabei lässt sich die Position der Teilchen auf dem Empfängermaterial mit sehr hoher Genauigkeit einstellen.

Akkurat und kontrollierbar
„Die neue Methode ist die erste, mit der Nanopartikel in bestimmter Größe hergestellt und gleichzeitig präzise positioniert werden können“, erläutert Prof. Dr. Boris Chichkov, Leiter der Abteilung Nanotechnologie. „Sie ist in dieser Hinsicht chemischen Verfahren weit überlegen, bei denen zwar große Mengen Nanopartikel produziert, diese aber nicht an der gewünschten Position platziert werden können.“ Mit der Methode können zwei- oder dreidimensionale geordnete Partikelstrukturen, wie Nanoantennen, Nanolaser und Metamaterialien, realisiert werden.

Von amorph zu kristallin mit zweitem Puls
Die Herstellung von Silicium-Nanopartikeln mit bestimmter Größe ist besonders interessant, da diese besondere optische Eigen-schaften haben: Sie streuen vor allem das sichtbare Licht stark und reagieren dabei neben dem elektrischen Feld des Lichts auch auf das magnetische. Hingegen wechselwirkt bekannte Materie fast ausschließlich mit dem elektrischen Feld. Dabei wird übereinstimmend mit der Mie-Theorie auch das magnetische Licht gestreut. Die gefertigten Siliciumpartikel liegen nach dem Druckprozess in amorpher Phase vor und können mit einem zweiten Laserpuls in die kristalline Phase transformiert werden.
„Die Ergebnisse haben bereits zur Entstehung der neuen For-schungsrichtung Siliciumnanophotonik mit weltweitem Interesse geführt“, so Chichkov. „Die neue Methode wird daher sicherlich viele neue Anwendungen finden.“

Die Untersuchungen fanden statt im Rahmen der wissenschaftlichen Schwerpunktprogramme SPP 1391 „Ultrafast Nanooptics“ sowie dem Transregioprojekt TRR 123 „PlanOS“. Beide Programme werden von der Deutschen Forschungsgemeinschaft gefördert.

Artikel erschienen in Nature Communications | 5:3402 | DOI: 10.1038/ncomms4402

Lena Bennefeld | Laser Zentrum Hannover e.V.
Weitere Informationen:
http://www.lzh.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics