Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Leuchtdioden (OLEDs) als Kompassnadel - Forscher entwickeln neuartige Magnetsensoren

13.06.2012
OLEDs gehören zu den Technologien der Zukunft. Schon jetzt finden sie sich in vielen Display- und Beleuchtungsanwendungen.

Denn OLEDs erzeugen ein brillantes Bild, sind relativ einfach herzustellen, sehr dünn, energiesparend und sogar auf flexiblen Trägerfolien einsetzbar. Forscher der Universität Regensburg konnten jetzt auch zeigen, dass die elektrische Lichterzeugung dabei sehr stark von magnetischen Feldern abhängt. Damit lassen sich OLEDs als empfindliche Magnetsensoren einsetzen – beispielsweise, um in Navigationsgeräten das Erdmagnetfeld zu vermessen.

Prof. Dr. John Lupton vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg entwickelte in Kooperation mit Wissenschaftlern der University of Utah und der University of Sydney ein entsprechendes Gerät, das die Eigenschaften von OLEDs mit der Präzision herkömmlicher Magnetsensoren verbindet. Die Einheit benötigt keine Kalibrierung und funktioniert auch bei extremen Temperaturen.

Für die Umwandlung von Strom in Licht bringen OLEDs positive und negative Ladungen zusammen, sogenannte Elektronen und Löcher. Diese Elementarladungen haben neben der elektrischen Eigenschaft noch ein weiteres Merkmal: So verhält sich ein Elektron mikroskopisch gesehen wie ein kleiner Stabmagnet. Richten sich viele dieser Stabmagnete zusammen in die gleiche Richtung aus, so spricht man von Magnetismus. Während im Alltag die statischen Eigenschaften magnetischer Felder dominieren, so sind für Physiker besonders die dynamischen magnetischen Prozesse – wie beispielsweise die Spinresonanz – interessant. Diese lässt sich leicht veranschaulichen. Läuft man mit einem Kompass unter einer Stromleitung durch, so schlägt die Kompassnadel aus, da der Strom ein Magnetfeld erzeugt, das das Erdmagnetfeld überlagert. Ändert sich die Stromrichtung nun regelmäßig, so ist es möglich, die Kompassnadel gleichmäßig auszulenken oder gar zum Rotieren zu bringen.

Eine solche Rotation können die Stabmagnete der Elektronen auch in OLEDs erfahren. Wie bei einer Reihe von Stabmagneten hängt hier die Wechselwirkung zwischen den Magneten von der jeweiligen Richtung ab: Zwei Nordpole stoßen sich ab, Nord- und Südpol ziehen sich an. Mit einem stromdurchflossenen Draht können die Elektronen in der OLED nun zum Schwingen angeregt werden. Kleinste Änderungen in Magnetfeldern können als eine Änderung der Schwingung exakt ausgemessen werden. Somit wird aus einem – OLED-basierten – Display eines Navigationsgeräts das Navigationsinstrument selbst.

In organischen Halbleitern, aus denen OLEDs hergestellt werden, können Elektronen ihre Eigenschaften als Stabmagneten besonders gut zur Schau stellen. OLED-basierte Magnetfeldsensoren sind deshalb auch außerordentlich empfindlich. Solche Sensoren könnten auch in medizinisch-diagnostischen Verfahren Anwendung finden. So ließe sich mit einem OLED-Display ein magnetisches Feld so genau abbilden, dass sogar biologische Prozesse untersucht werden könnten.

Die Ergebnisse der Regensburger Physiker werden in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht (DOI: 10.1038/ncomms1895).

Titel der Originalveröffentlichung:
“Robust absolute magnetometry with organic thin-film devices”

Ansprechpartner für Medienvertreter:
Prof. Dr. John Lupton
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2081
John.Lupton@ur.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
14.06.2019 | Technische Universität München

nachricht Ins Innere von Materialien blicken
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics