Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Pinzette enthüllt ein Geheimnis der Muskelkraft: Was das Herz im Innersten zusammenhält

24.01.2017

Unser Herz schlägt ein Leben lang. Mit jedem Schlag zieht sich der Herzmuskel zusammen und dehnt sich anschließend wieder aus. Warum das ein Leben lang funktioniert, ist in vielen Teilen immer noch ein Rätsel. Forscher der Technischen Universität München TUM haben jetzt die Kräfte gemessen, die zwischen den Muskelbausteinen Titin und α-Actinin wirken und den Muskel stabilisieren.


Optische Pinzette: Zwei Laserstrahlen halten winzige Glaskügelchen fest. Auf deren Oberfläche ist der Proteinkomplex fixiert.

Bild: Marco Grison / TUM


Mit einer „optischen Pinzette“ misst Marco Grison die Wechselwirkungen zwischen zwei Proteinen

Bild: Uli Benz / TUM

Der menschliche Körper ist eine Dauerbaustelle: Ständig werden Proteine abgebaut und durch neue ersetzt. Doch dieser stete Umbau beeinträchtigt nicht die Funktion. Das Herz schlägt weiter, die Atmung bleibt nicht stehen, auf unsere Augen und Ohren können wir uns jederzeit verlassen.

Wie es dem Körper gelingt, die Proteinstränge im Muskel zusammenzuhalten, selbst wenn einzelne Bausteine ersetzt werden, beschäftigt Prof. Matthias Rief seit Jahren.

„Es muss Kräfte geben, die die einzelnen Ketten, die Filamente, stabilisieren, sonst würde der Muskel auseinanderfallen. Doch ist es bisher nicht gelungen, die Ursache dieser Kräfte aufzuspüren“, berichtet der Inhaber des Lehrstuhls für Biophysik an der TU München. Zusammen mit seinem Team hat er jetzt das Geheimnis des Zusammenhalts der Muskeln entschlüsselt.

Eine optische Pinzette entschlüsselt die Bindungskräfte

Zwei Proteine sind demnach verantwortlich dafür, dass sich Muskeln dehnen lassen ohne auseinander zu fallen: eines davon ist das Titin, das längste Eiweiß des menschlichen Körpers, das andere ist α-Actinin, das über die Fähigkeit verfügt, das Titin im Muskelgewebe zu verankern.

Das Wechselspiel zwischen diesen Proteinen konnten die TUM-Forscher mit Hilfe eines eigens dafür entwickelten Apparats, studieren: Die „optische Pinzette“ füllt einen 20 Quadratmeter großen Raum im Keller des Instituts. Da gibt es Laserquellen, Optiken, Kameras, Bildschirme. Kernstück der Anlage ist eine mit Flüssigkeit gefüllte Messkammer mit kleinen Glaskügelchen, an deren Oberflächen die Proteine Tinin und α-Actinin haften. Zwei Laserstrahlen, welche die Messzelle durchdringen, fangen jeweils ein Kügelchen ein und halten es fest.

Ein Netzwerk spendet Kraft

„Mit Hilfe der Laserstrahlen, können wir die Kügelchen zunächst soweit zusammenbringen, dass sich die beiden Proteine vernetzten“, erklärt Marco Grison, der in seiner Promotionsarbeit die Bindung zwischen den Muskelbausteinen erforscht. „Im zweiten Schritt vergrößern wir den Abstand zwischen den Laserstrahlen und damit auch der Kügelchen, bis die maximale Dehnung der Proteine erreicht ist. Aus diesem Abstand lässt sich dann die Bindungskraft zwischen dem Titin und dem α-Actinin errechnen.“

Fünf Pico Newton hält die Proteinverbindung aus – das entspricht der Gewichtskraft einer Billionstel Tafel Schokolade. „Dieses Ergebnis hat uns sehr überrascht“, erinnert sich Rief. „Derart geringe Kräfte können einen Muskel eigentlich nicht dauerhaft zusammenhalten.“

Und doch ist die Protein-Verbindung der Schlüssel zum Verständnis: Im Muskel wird jeder Titin-Strang von bis zu sieben α-Actinin-Proteinen gehalten. Das haben die Strukturbiologen an der Universität Wien, mit denen die Münchner Forscher zusammenarbeiten, festgestellt. Damit erhöht sich die Kraft um das Siebenfache. Genug, um das Herz schlagen zu lassen, und sogar noch nebenbei – sozusagen bei laufendem Betrieb – einzelne Molekülketten abzubauen und durch neue zu ersetzen.

Reparaturen während des laufenden Betriebs

„In der Summe reichen die Bindungen aus, um den Muskel zu stabilisieren“, erläutert Rief. „Das Protein-Netzwerk ist dabei nicht nur stabil, sondern auch hochdynamisch. Unsere Messungen zeigen, dass sich die Proteine lösen, wenn man sie auseinander zieht. Sobald aber die Dehnung nachlässt, finden sie wieder zueinander.“ Diese Affinität der Eiweißmoleküle zueinander garantiere, dass der Muskel nicht reiße, sondern nach einer Dehnung wieder in seien ursprüngliche Form annehme.

Die enge Verbindung zwischen den Proteinen ist dabei nicht auf das Herz beschränkt. Die Interaktion zwischen Titin und α-Actinin stabilisiert alle Muskeln, die gedehnt werden – gleichgültig ob beim Atmen, Gehen, Greifen oder Lachen.

Grundlagenforschung für die Medizin der Zukunft

Eines Tages könnten auch Patienten von den Ergebnissen profitieren: „Die Grundlagenforschung schafft hier die Basis für ein Verständnis von genetisch bedingten Krankheiten wie Muskeldystrophe und Herzinsuffizienz“, resümiert Rief.“ Das kann Mediziner und Pharmakologen helfen, neue Therapien zu entwickeln.“

Die Arbeiten wurden unterstützt mit Mitteln der EU (Marie Curie Initial Training Network), der Deutschen Forschungsgemeinschaft (FOR 1352, Exzellenzcluster Nanosystems Initiative Munich, NIM und Center for Integrated Protein Science Munich, CIPSM), des österreichischen Wissenschaftsfonds und des österreichischen Ministeriums für Wissenschaft, Forschung und Wirtschaft (Center for Optimized Structural Studies, Programm „Laura Bassi Centres of Expertise“).

Publikation:

α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk,
Marco Grison, Ulrich Merkel Julius Kostan, Kristina Djinovic-Carugo, and Matthias Rief
http://www.pnas.org/content/early/2017/01/11/1612681114.abstract

Kontakt:

Prof. Dr. Matthias Rief
Technische Universität München
Lehrstuhl für Molekulare Biophysik (E22)
James-Franck-Str.1, 85748 Garching, Germany
Tel.: +49 89 289 12471 – E-Mail: matthias.rief@mytum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33672/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

nachricht Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert
19.11.2018 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Gen-Radiergummi: Neuer Behandlungsansatz bei chronischen Erkrankungen

19.11.2018 | Biowissenschaften Chemie

Mit maschinellen Lernverfahren Anomalien frühzeitig erkennen und Schäden vermeiden

19.11.2018 | Informationstechnologie

Neuer Stall ermöglicht innovative Forschung für tiergerechte Haltungssysteme

19.11.2018 | Agrar- Forstwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics