Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Observatorium dreht »Himmels-Film«: Pan-STARRS beginnt systematische Durchmusterung

16.06.2010
Das Projekt Pan-STARRS hat mit einzigartigen Beobachtungen großer Teile des Nachthimmels begonnen, bei denen erstmals systematisch und im großen Stil nach veränderlichen Phänomenen gesucht wird. Die Beobachtungsdaten erlauben die Suche nach Asteroiden, die die Erde bedrohen könnten, geben aber auch Aufschlüsse über einige der größten kosmischen Rätsel wie Dunkle Materie und Dunkle Energie.

Wissenschaftler der Max-Planck-Institute für Astronomie und extraterrestrische Physik sind mit einer Reihe von Projekten an den Beobachtungen beteiligt, unter anderem an der Suche nach Planeten um ferne Sterne, nach Braunen Zwergen (»gescheiterten Sternen«) und weit entfernten aktiven Galaxien.


Das Pan-STARRS1 Observatorium kurz vor Sonnenaufgang auf dem Haleakala, Maui. Bild: Rob Ratkowski

Die ewig gleichen Konstellationen des Sternenhimmels sind geradezu ein Sinnbild des Unveränderlichen. Doch bei genauerem Hinsehen ist am Nachthimmel einiges los – von Objekten wie veränderlichen Sternen bis zu seltenen Ereignissen, die jeweils nur für einen kurzen Zeitraum sichtbar sind. Jetzt hat eine Durchmusterung begonnen, die sich gezielt solchen veränderlichen Phänomenen widmet. Pan-STARRS1 soll von rund 75% des Nachthimmels 30 zeitversetzte Aufnahmen anfertigen; von besonders interessanten Gebieten werden Zeitserien mit mehreren hundert Bildern erstellt. So entsteht ein einmaliger »Himmelsfilm«.

»Jeden Monat beobachtet Pan-STARRS1 ein Sechstel des Himmels in fünf verschiedenen Wellenlängenbereichen«, erklärt Dr. Roberto Saglia vom Max-Planck-Institut für extraterrestrische Physik. „Damit können wir zum einen sehr gut Helligkeitsvariationen am Himmel aufspüren, zum anderen aber auch besonders tiefe Aufnahmen von großen Himmelsregionen machen.“ Bestimmte Himmelsregionen werden dabei sogar jede Nacht beobachtet. Bei den Beobachtungen soll unter anderem eine einzigartig detaillierte dreidimensionale Karte unserer Heimatgalaxie, der Milchstraße, entstehen. In unserer Nachbargalaxie Andromeda soll Pan-STARRS1 ein komplettes Inventar veränderlicher Objekte erstellen.

Pan-STARRS1 ist dabei zum einen eine klassische Durchmusterung, bei der nach bekannten Klassen von Himmelsobjekten gesucht wird – von extrem schwach und rötlich leuchtenden Braunen Zwergen (Objekten, die nicht genügend Masse besitzen, um sich zu richtigen Sternen zu entwickeln) in unserer Milchstraße bis zu den frühesten aktiven Galaxien in mehr als 13 Milliarden Lichtjahren Entfernung (»Quasare bei Rotverschiebung z = 7«). Ein anderer Teil der Suche ist von grundlegendem praktischen Interesse: Pan-STARRS1 soll Asteroiden aufspüren, die groß genug sind, um bei einem Zusammenstoß mit der Erde eine globale Katastrophe auszulösen.

Da Pan-STARRS1 seinen Blick wiederholt auf die gleichen Himmelsregionen richtet, kann es Veränderungen nachweisen. So lassen sich beispielsweise »Exoplaneten-Transits« ausfindig machen – Planeten, die einen fernen Stern so umkreisen, dass sie sich dabei von der Erde aus gesehen regelmäßig zwischen ihren Mutterstern und den Beobachter schieben; dabei wird ein winziger Bruchteil des Sternenlichts abgefangen und die scheinbare Helligkeit des Sterns nimmt ein winziges bisschen ab. Die gleiche Beobachtungsstrategie erhöht die Chancen, auch sehr seltene und kurzlebige Himmelsphänomene dokumentieren zu können. So könnte sich erstmals nachweisen lassen, wie ein Schwarzes Loch im Zentrum einer fernen Galaxie einen Stern verschluckt – ein Ereignis, das zu einem nur wenige Tage dauernden Helligkeitsanstieg führt. Auch auf Überraschungen machen sich die Astronomen gefasst: »Wann immer Astronomen den Himmel auf andere Weise beobachten als zuvor, machen sie unerwartete neue Entdeckungen«, sagt Prof. Dr. Hans-Walter Rix vom Max-Planck-Institut für Astronomie: »Pan-STARRS1 sucht erstmals systematisch und weiträumig danach, wie sich der Nachthimmel mit der Zeit verändert – und mit dieser neuen Art der Beobachtung sind überraschende neue Erkenntnisse geradezu vorprogrammiert.«

Das Pan-STARRS1-Observatorium wurde am Institut für Astronomie der Universität von Hawaii (IfA) entwickelt und gebaut und befindet sich auf dem schlafenden Vulkan Haleakala. Das Teleskop, das jetzt den wissenschaftlichen Beobachtungsbetrieb aufgenommen hat, PanSTARRS1 (PS1), ist ein Prototyp für spätere umfangreichere Durchmusterungen mit insgesamt vier Teleskopen des gleichen Typs. »PS1 nimmt bereits seit sechs Monaten Daten mit wissenschaftlicher Qualität auf«, sagt Dr. Nick Kaiser, der für das Pan-STARRS-Projekt verantwortliche Wissenschaftler am IfA. »Ab jetzt können wir den regulären Betrieb starten, bei dem das Observatorium von der Dämmerung bis zum Morgengrauen Daten sammelt.« Damit ist das Teleskop nun vom Testbetrieb zum wissenschaftlichen Beobachtungsbetrieb übergegangen.

Mit einem Teleskopspiegel von nur 1,8 Meter Durchmesser ist PS1 für die Verhältnisse der modernen professionellen Astronomie ein eher kleines Teleskop. Allerdings hat PS1 ein außergewöhnlich großes Sichtfeld vorzuweisen: Etwa 30-Mal so groß wie der Vollmond (sieben Quadratgrad) ist der Himmelsabschnitt, den PS1 mit einer Aufnahme erfassen kann. Die am Teleskop angebrachte 1,4-Gigapixel-Kamera ist die größte Digitalkamera der Welt und macht PS1 zum derzeit leistungsstärksten Teleskop für Himmelsdurchmusterungen.

Nachdem die Aufnahme der Daten mit dem PS1-Observatorium nun begonnen hat, wird das Observatorium im Laufe der nächsten Jahre mehrere Petabytes an Daten produzieren, und könnte jede Nacht etwa 1000 DVDs füllen. Um diese Datenflut verarbeiten zu können, wurde am Rechenzentrum Garching der Pan-STARRS-Cluster eingerichtet, der mit 150 TB Plattenplatz für die Datenreduktion und erste Analyseschritte, weiterem Speicherplatz auf Magnetbändern und 700 CPUs bereits seine Arbeit an den ersten Durchmusterungsdaten aufgenommen hat. Außerdem wurde eine spezielle Software entwickelt, die anhand der Farbinformationen eine erste Klassifizierung der auf den Bildern identifizierten Objekte vornimmt und bestimmte Kerndaten wie Temperatur und Extinktion von Sternen oder die Entfernung (Rotverschiebung) von weit entfernten Objekten automatisch bestimmt.

Kontakt

Dr. Hannelore Hämmerle (Pressesprecherin, MPE)
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Dr. Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 261
E-Mail: poessel@mpia.de
Dr. Roberto Saglia
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3916
E-Mail: saglia@mpe.mpg.de
Dr. Bertrand Goldman
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 260
E-Mail: goldman@mpia.de
Dr. Klaus Jäger
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 379
E-Mail: jaeger@mpia.de
Dipl.-Phys. Axel Quetz
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 273
E-Mail: quetz@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Massereiche Sternembryos wachsen in Schüben
14.07.2020 | Max-Planck-Institut für Astronomie

nachricht Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar
13.07.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hammer-on – wie man Atome schneller schwingen lässt

Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben. Die mit dem Strom verknüpfte Ladungsverschiebung zwischen Gallium- und Arsen-Atomen wirkt über elektrische Wechselwirkungen zurück auf die Schwingungen.

Hammer-on ist eine von vielen Rockmusikern benutzte Technik, um mit der Gitarre schnelle Tonfolgen zu spielen und zu verbinden. Dabei wird eine schwingende...

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wind trägt Mikroplastik in die Arktis

14.07.2020 | Ökologie Umwelt- Naturschutz

Nanoelektronik lernt wie das Gehirn

14.07.2020 | Informationstechnologie

Anwendungslabor Industrie 4.0 der THD: Smarte Lösungen für die Unikatproduktion

14.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics