Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Observatorium dreht »Himmels-Film«: Pan-STARRS beginnt systematische Durchmusterung

16.06.2010
Das Projekt Pan-STARRS hat mit einzigartigen Beobachtungen großer Teile des Nachthimmels begonnen, bei denen erstmals systematisch und im großen Stil nach veränderlichen Phänomenen gesucht wird. Die Beobachtungsdaten erlauben die Suche nach Asteroiden, die die Erde bedrohen könnten, geben aber auch Aufschlüsse über einige der größten kosmischen Rätsel wie Dunkle Materie und Dunkle Energie.

Wissenschaftler der Max-Planck-Institute für Astronomie und extraterrestrische Physik sind mit einer Reihe von Projekten an den Beobachtungen beteiligt, unter anderem an der Suche nach Planeten um ferne Sterne, nach Braunen Zwergen (»gescheiterten Sternen«) und weit entfernten aktiven Galaxien.


Das Pan-STARRS1 Observatorium kurz vor Sonnenaufgang auf dem Haleakala, Maui. Bild: Rob Ratkowski

Die ewig gleichen Konstellationen des Sternenhimmels sind geradezu ein Sinnbild des Unveränderlichen. Doch bei genauerem Hinsehen ist am Nachthimmel einiges los – von Objekten wie veränderlichen Sternen bis zu seltenen Ereignissen, die jeweils nur für einen kurzen Zeitraum sichtbar sind. Jetzt hat eine Durchmusterung begonnen, die sich gezielt solchen veränderlichen Phänomenen widmet. Pan-STARRS1 soll von rund 75% des Nachthimmels 30 zeitversetzte Aufnahmen anfertigen; von besonders interessanten Gebieten werden Zeitserien mit mehreren hundert Bildern erstellt. So entsteht ein einmaliger »Himmelsfilm«.

»Jeden Monat beobachtet Pan-STARRS1 ein Sechstel des Himmels in fünf verschiedenen Wellenlängenbereichen«, erklärt Dr. Roberto Saglia vom Max-Planck-Institut für extraterrestrische Physik. „Damit können wir zum einen sehr gut Helligkeitsvariationen am Himmel aufspüren, zum anderen aber auch besonders tiefe Aufnahmen von großen Himmelsregionen machen.“ Bestimmte Himmelsregionen werden dabei sogar jede Nacht beobachtet. Bei den Beobachtungen soll unter anderem eine einzigartig detaillierte dreidimensionale Karte unserer Heimatgalaxie, der Milchstraße, entstehen. In unserer Nachbargalaxie Andromeda soll Pan-STARRS1 ein komplettes Inventar veränderlicher Objekte erstellen.

Pan-STARRS1 ist dabei zum einen eine klassische Durchmusterung, bei der nach bekannten Klassen von Himmelsobjekten gesucht wird – von extrem schwach und rötlich leuchtenden Braunen Zwergen (Objekten, die nicht genügend Masse besitzen, um sich zu richtigen Sternen zu entwickeln) in unserer Milchstraße bis zu den frühesten aktiven Galaxien in mehr als 13 Milliarden Lichtjahren Entfernung (»Quasare bei Rotverschiebung z = 7«). Ein anderer Teil der Suche ist von grundlegendem praktischen Interesse: Pan-STARRS1 soll Asteroiden aufspüren, die groß genug sind, um bei einem Zusammenstoß mit der Erde eine globale Katastrophe auszulösen.

Da Pan-STARRS1 seinen Blick wiederholt auf die gleichen Himmelsregionen richtet, kann es Veränderungen nachweisen. So lassen sich beispielsweise »Exoplaneten-Transits« ausfindig machen – Planeten, die einen fernen Stern so umkreisen, dass sie sich dabei von der Erde aus gesehen regelmäßig zwischen ihren Mutterstern und den Beobachter schieben; dabei wird ein winziger Bruchteil des Sternenlichts abgefangen und die scheinbare Helligkeit des Sterns nimmt ein winziges bisschen ab. Die gleiche Beobachtungsstrategie erhöht die Chancen, auch sehr seltene und kurzlebige Himmelsphänomene dokumentieren zu können. So könnte sich erstmals nachweisen lassen, wie ein Schwarzes Loch im Zentrum einer fernen Galaxie einen Stern verschluckt – ein Ereignis, das zu einem nur wenige Tage dauernden Helligkeitsanstieg führt. Auch auf Überraschungen machen sich die Astronomen gefasst: »Wann immer Astronomen den Himmel auf andere Weise beobachten als zuvor, machen sie unerwartete neue Entdeckungen«, sagt Prof. Dr. Hans-Walter Rix vom Max-Planck-Institut für Astronomie: »Pan-STARRS1 sucht erstmals systematisch und weiträumig danach, wie sich der Nachthimmel mit der Zeit verändert – und mit dieser neuen Art der Beobachtung sind überraschende neue Erkenntnisse geradezu vorprogrammiert.«

Das Pan-STARRS1-Observatorium wurde am Institut für Astronomie der Universität von Hawaii (IfA) entwickelt und gebaut und befindet sich auf dem schlafenden Vulkan Haleakala. Das Teleskop, das jetzt den wissenschaftlichen Beobachtungsbetrieb aufgenommen hat, PanSTARRS1 (PS1), ist ein Prototyp für spätere umfangreichere Durchmusterungen mit insgesamt vier Teleskopen des gleichen Typs. »PS1 nimmt bereits seit sechs Monaten Daten mit wissenschaftlicher Qualität auf«, sagt Dr. Nick Kaiser, der für das Pan-STARRS-Projekt verantwortliche Wissenschaftler am IfA. »Ab jetzt können wir den regulären Betrieb starten, bei dem das Observatorium von der Dämmerung bis zum Morgengrauen Daten sammelt.« Damit ist das Teleskop nun vom Testbetrieb zum wissenschaftlichen Beobachtungsbetrieb übergegangen.

Mit einem Teleskopspiegel von nur 1,8 Meter Durchmesser ist PS1 für die Verhältnisse der modernen professionellen Astronomie ein eher kleines Teleskop. Allerdings hat PS1 ein außergewöhnlich großes Sichtfeld vorzuweisen: Etwa 30-Mal so groß wie der Vollmond (sieben Quadratgrad) ist der Himmelsabschnitt, den PS1 mit einer Aufnahme erfassen kann. Die am Teleskop angebrachte 1,4-Gigapixel-Kamera ist die größte Digitalkamera der Welt und macht PS1 zum derzeit leistungsstärksten Teleskop für Himmelsdurchmusterungen.

Nachdem die Aufnahme der Daten mit dem PS1-Observatorium nun begonnen hat, wird das Observatorium im Laufe der nächsten Jahre mehrere Petabytes an Daten produzieren, und könnte jede Nacht etwa 1000 DVDs füllen. Um diese Datenflut verarbeiten zu können, wurde am Rechenzentrum Garching der Pan-STARRS-Cluster eingerichtet, der mit 150 TB Plattenplatz für die Datenreduktion und erste Analyseschritte, weiterem Speicherplatz auf Magnetbändern und 700 CPUs bereits seine Arbeit an den ersten Durchmusterungsdaten aufgenommen hat. Außerdem wurde eine spezielle Software entwickelt, die anhand der Farbinformationen eine erste Klassifizierung der auf den Bildern identifizierten Objekte vornimmt und bestimmte Kerndaten wie Temperatur und Extinktion von Sternen oder die Entfernung (Rotverschiebung) von weit entfernten Objekten automatisch bestimmt.

Kontakt

Dr. Hannelore Hämmerle (Pressesprecherin, MPE)
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Dr. Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 261
E-Mail: poessel@mpia.de
Dr. Roberto Saglia
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3916
E-Mail: saglia@mpe.mpg.de
Dr. Bertrand Goldman
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 260
E-Mail: goldman@mpia.de
Dr. Klaus Jäger
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 379
E-Mail: jaeger@mpia.de
Dipl.-Phys. Axel Quetz
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: +49 6221 528 273
E-Mail: quetz@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Dank Tomographie-Weltrekord kann man mit Synchrotronstrahlung zuschauen, wie Metall aufgeschäumt wird
21.08.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems
21.08.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungen

Wie smarte Produkte Unternehmen herausfordern

20.08.2019 | Veranstaltungen

Innovationen der Luftfracht: 4. Air Cargo Conference in Frankfurt am Main

20.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungsnachrichten

Proteinaggregation: Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant

21.08.2019 | Biowissenschaften Chemie

Das Schulbuch wird digital

21.08.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics