Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nichtlokale Korrelationen in natürlichen Systemen

12.04.2017

Nichtlokale Korrelationen sind ein Quantenphänomen, das eine noch stärkere Form von Wechselbeziehung darstellt als Quantenverschränkung.

Wissenschaftler am Max-Planck-Institut für Quantenoptik, dem Institute of Photonic Sciences (ICFO) in Barcelona, der Universität Innsbruck und dem Center for Theoretical Physics der polnischen Akademie der Wissenschaften haben nun eine neue Methode entwickelt, mit der sie zeigen können, dass niedrige Energiezustände von Systemen aus mit einem Spin charakterisierten Teilchen wie zum Beispiel Elektronen diese nichtlokalen Korrelationen aufweisen können.


(aus der Originalveröffentlichung): Bereiche, die sich jeweils in ihrem Verhalten von dem klassischen System unterscheiden, für einen XXZ-artigen Hamilton-Operator mit zwei Parametern.

Grafik: MPQ, Abteilung Theorie

Klassische Korrelationen sind Teil unserer Alltagserfahrung. Wenn zum Beispiel jemand ein Paar Socken immer der gleichen Form und Farbe anzieht, kann darüber auch die Form und Farbe des zweiten Sockens bestimmt werden. Zudem können die Form und Farbe eines Sockens gleichzeitig beobachten werden, und dies verrät auch die Form und Farbe des anderen Sockens.

Verschränkte Zustände, die typische Form von Quantenkorrelationen, trotzen diesem Grundprinzip: Wenn die Socken verschränkt wären, könnten wir durch die Beobachtung der Farbe eines Sockens jene des anderen Sockens vorhersagen.

Wenn wir aber gleichzeitig auch dessen Form feststellen, würde das die Farbe „stören“ und damit wäre es vollkommen unmöglich, die Farbe des anderen Sockens vorherzusagen. Diese sonderbare „Koordination“ zwischen Teilchen ist als Quantenverschränkung bekannt und ist eines der wesentlichen Merkmale der Quantenwelt.

Einige verschränkte Zustände zeigen eine noch sonderbarere Form von Korrelationen, nämlich nichtlokale Korrelationen. Diese verletzen zwei scheinbar vernünftige Prinzipien: Erstens, dass die Eigenschaften von Objekten (wie Form oder Farbe) unabhängig von unserem Wissen über sie existieren, und zweitens, dass sich Informationen nicht instantan verbreiten können.

Diese faszinierende Form der nichtlokalen Korrelationen ist in Vielteilchensystemen nur sehr schwer zu charakterisieren. Dafür gibt es mindestens drei Gründe: Erstens ist das Studium der klassischen Korrelationen mathematisch sehr komplex; zweitens sind Quantenvielteilchensysteme aufgrund ihres exponentiellen Charakters sehr schwer zu beschreiben; und drittens sind die derzeit verfügbaren experimentellen Techniken eher begrenzt, was die Möglichkeit von Messungen im Labor sehr einschränkt. Um die Rolle von nichtlokalen Korrelationen in Quantenvielteilchensystemen zu erforschen, müssen diese drei Probleme gleichzeitig in Angriff genommen werden.

In einer nun in der Fachzeitschrift Physical Review X 7, 021005 (10. April 2017) veröffentlichten Arbeit hat ein internationales Team von Wissenschaftlern in München, Barcelona, Innsbruck und Warschau einen neuen, einfachen Test auf die Existenz nichtlokaler Korrelationen in Quantenvielteilchensystemen präsentiert.

Die Methode ermöglicht den Forschern zu ermitteln, ob nichtlokale Korrelationen in natürlichen Systemen auftreten. Genauer gesagt, untersuchten sie dazu die Grundzustände von Systemen aus Teilchen mit Spin-Freiheitsgraden, wie etwa Elektronen, in einer räumlichen Dimension. Durch Kombination von numerischen und analytischen Ergebnissen fanden sie heraus, dass einige dieser Systeme, die von Physikern seit mehreren Jahrzehnten erforscht werden, einen Zustand minimaler Energie (im Idealfall der Grundzustand) haben, der nichtlokale Korrelationen aufweisen kann.

„Diese Forschung wirft neues Licht auf ein faszinierendes Problem in der Physik und wird hoffentlich die weitere Entwicklung unseres Verständnisses von Nichtlokalität in Quantenvielteilchensystemen anspornen“, sagen Jordi Tura vom Max-Planck-Institut für Quantenoptik und Gemma De las Cuevas vom Institut für Theoretische Physik der Universität Innsbruck.

Originalveröffentlichung:
J. Tura, G. De las Cuevas, R. Augusiak, M. Lewenstein, A. Acín, and J. I. Cirac
Energy as a detector of nonlocality of many-body spin systems
PhysRev X 7, 021005 – Published 10 April 2017

Kontakt:

Dr. Jordi Tura i Brugués
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -346
E-Mail: jordi.tura@mpq.mpg.de

Dr. Gemma de las Cuevas
Institut für Theoretische Physik
Universität Innsbruck
Telefon: +43 512 507 52247
E-Mail: Gemma.DelasCuevas@uibk.ac.at

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 705
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

nachricht Wenn sich Atome zu nahe kommen
17.12.2018 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kommunikation zwischen neuronalen Netzwerken

17.12.2018 | Biowissenschaften Chemie

Beim Phasenübergang benutzen die Elektronen den Zebrastreifen

17.12.2018 | Physik Astronomie

Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente

17.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics