Neutronensterne: Wie kosmische Ereignisse Einblick in grundlegende Eigenschaften der Materie geben

Simulation: Die verschiedenen Farben zeigen die Massendichte und Temperatur einige Zeit nach dem Verschmelzen der Neutronensterne, kurz bevor das Objekt zu einem schwarzen Loch kollabiert. C. Breu, L. Rezzolla

Quarks, die kleinsten Bausteine der Materie, hat man in der Natur noch nie isoliert beobachtet. Sie sind vielmehr immer in Protonen und Neutronen gebunden. Ein Neutronenstern jedoch, der so viel wiegen kann wie unsere Sonne und doch nur die Größe einer Stadt wie Frankfurt aufweist, besitzt einen so dichten Kern, dass ein Übergang von Neutronenmaterie zu Quarkmaterie auftreten könnte.

Physiker nennen diesen Prozess einen Phasenübergang, ähnlich dem Verdampfen von Wasser. Insbesondere ist ein solcher Phasenübergang möglich, wenn kollidierende Neutronensterne ein massives meta-stabiles Objekt mit Dichten bilden, die weit höher sein können als in Kernmaterie, und Temperaturen, die zehntausend Mal höher sind als im Inneren unserer Sonne.

Nachricht von möglichen Phasenübergängen im Weltall könnten wir durch die Messung von Gravitationswellen erhalten, die von den verschmelzenden Neutronensternen ausgesendet werden. Der Phasenübergang müsste im Gravitationswellensignal eine charakteristische Signatur hinterlassen.

Wie diese aussehen könnte, haben die Forschergruppen aus Frankfurt, Darmstadt und Ohio (Goethe-Universität/FIAS/GSI/Kent University) sowie aus Darmstadt und Wroclaw (GSI/Wroclaw University) nun mithilfe moderner Supercomputer berechnet. Dazu verwendeten sie unterschiedliche theoretische Modelle für den Phasenübergang.

Findet ein Phasenübergang erst etwas nach der tatsächlichen Verschmelzung statt, tauchen geringe Mengen von Quarks allmählich überall im verschmolzenen Objekt auf.
„Zum ersten Mal konnten wir mithilfe der Einstein-Gleichungen zeigen, dass diese kleine Änderung in der Struktur eine Abweichung im Gravitationswellensignal erzeugt, bis der neugebildete riesige Neutronenstern unter seinem eigenen Gewicht zu einem schwarzen Loch kollabiert“, erklärt Luciano Rezzolla, Professor für theoretische Astrophysik an der Goethe-Universität.

In den Computermodellen von Dr. Andreas Bauswein vom GSI Helmholzzentrum für Schwerionenforschung im Darmstadt tritt der Phasenübergang bereits direkt nach der Kollision auf – es bildet sich ein Kern von Quarkmaterie im Inneren des Zentralobjekts. „Wir konnten zeigen, dass es in diesem Fall eine deutliche Veränderung in der Frequenz des Gravitationswellensignals gibt“, sagt Bauswein. „Damit haben wir für die Zukunft ein messbares Kriterium für einen Phasenübergang in verschmelzenden Neutronensternen identifiziert.“

Noch sind nicht alle Details des Gravitationswellensignals mit den bestehenden Detektoren messbar. Sie werden aber mit der nächsten Generation von Messgeräten beobachtbar sein, oder auch, falls ein relativ nahes Verschmelzungsereignis stattfindet. Einen komplementären Ansatz zur Beantwortung der Fragen über Quarkmaterie bieten zwei Experimente:

Am existierenden Messaufbau HADES bei GSI und am zukünftigen CBM-Detektor an der Facility for Antiproton and Ion Research (FAIR), die gerade bei GSI errichtet wird, kann durch den Zusammenprall von Schwerionen komprimierte Kernmaterie entstehen. Dabei könnte es gelingen, Temperaturen und Dichten zu erzeugen, die vergleichbar mit den Zuständen in verschmelzenden Neutronensternen sind. Beide Methoden ermöglichen neue Einblicke in das Auftreten von Phasenübergängen in Kernmaterie und so auch in ihre grundlegenden Eigenschaften.

https://doi.org/10.1103/PhysRevLett.122.061101
https://doi.org/10.1103/PhysRevLett.122.061102

https://www.gsi.de/start/aktuelles/detailseite/2019/02/13/verschmelzende_neutron…

Media Contact

Dr. Ingo Peter idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.gsi.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer