Neutronen tasten Magnetfelder im Innern von Proben ab

Die magnetischen Feldlinien im Inneren eines supraleitenden Blei-Quaders bei 4,3 Kelvin. Die Schnittebene ist durch den gestrichelten Umriss angedeutet. Der Skalenstrich entspricht 5 mm. HZB

Magnetische Felder im Innern von Proben zu messen gelingt bislang nur auf indirekte Weise. Mit Licht, Röntgenstrahlung oder Elektronen lassen sich zwar magnetische Orientierungen abtasten, allerdings nur auf den Oberflächen von Materialien.

Neutronen dagegen dringen tief in die Probe ein, und können – dank ihrer eigenen magnetischen Eigenschaften – präzise Aufschluss über magnetische Felder im Inneren geben. Bislang aber ließen sich nur grob die unterschiedlich ausgerichteten magnetischen Domänen mit Hilfe von Neutronen kartieren, nicht aber die Vektorfelder (Richtungen und Stärken) des Magnetfelds im Inneren der Probe.

Nun hat ein Team um Dr. Nikolay Kardjilov und Dr. Ingo Manke am HZB eine neue Methode entwickelt, um die Magnetfeldlinien im Innern von massiven, dicken Proben zu vermessen: Für die Tensorielle Neutronen-Tomographie setzen sie Spin-Flipper und -Polarisatoren ein, die dafür sorgen, dass nur Neutronen mit gleichgerichteten Spins die Probe durchdringen.

Treffen solche spinpolarisierten Neutronen auf ein magnetisches Feld im Innern, regt dieses die Neutronenspins zur Präzession an, so dass sich die Spin-Polarisationsrichtung verändert, was Rückschlüsse auf die Feldlinien erlaubt.

Mit der neu entwickelten Experimentiermethode lässt sich aus neun einzelnen Tomographien mit jeweils unterschiedlichen Neutronenspin-Einstellungen eine dreidimensionale Abbildung des Magnetfelds im Innern der Probe berechnen. Hierzu wird ein von Dr. André Hilger am HZB neu entwickelter, äußerst komplexer mathematischer Tensor-Algorithmus eingesetzt, der „TMART“ getauft wurde.

Die Experten haben die neue Methode an gut verstandenen Proben getestet und evaluiert. Im Anschluss konnten sie erstmals das komplexe Magnetfeld im Inneren von supraleitendem Blei kartieren.
Die Probe aus massivem, polykristallinem Blei wurde auf 4 Kelvin abgekühlt (Blei wird supraleitend unterhalb von 7 Kelvin) und einem Magnetfeld von 0,5 Millitesla ausgesetzt.

Dabei wird das Magnetfeld zwar aufgrund des Meissner-Effekts aus dem Probeninneren verdrängt, dennoch bleiben magnetische Flusslinien an den (nicht-supraleitenden) Korngrenzen der polykristallinen Probe haften. Diese verschwinden auch dann nicht, nachdem das äußere Feld abgeschaltet wurde, weil sie zuvor im Innern der supraleitenden Kristallkörner Ströme induziert haben, die diese Felder nun aufrechterhalten.

„Zum ersten Mal können wir im Inneren eines massiven Materials das magnetische Vektor-Feld in seiner ganzen Komplexität dreidimensional sichtbar machen“ sagt HZB-Physiker Manke. „Neutronen können gleichzeitig massive Materialien durchdringen und Magnetfelder nachweisen. Es gibt zurzeit keine andere Methode, die das ermöglicht.“

Die Magnetische Tensor Tomografie ist zerstörungsfrei und kann Auflösungen bis in den Mikrometerbereich erreichen. Die Einsatzbereiche sind extrem vielfältig. Sie reichen von der Kartierung von magnetischen Feldern in Supraleitern und der Beobachtung von magnetischen Phasenübergängen bis zur Materialanalyse, die auch für die Industrie von großem Interesse ist: So lassen sich Feldverteilungen in Elektromotoren und metallischen Komponenten abbilden und Stromflüsse in Batterien, Brennstoffzellen oder anderen Antriebssystemen mit dieser Methode visualisieren.

Dr. Ingo Manke, manke@helmholtz-berlin.de

Tensorial Neutron Tomography of Three-Dimensional Magnetic Vector Fields in Bulk Materials
A. Hilger, I. Manke, N. Kardjilov, M. Osenberg, H. Markötter, J. Banhart; HZB, TU Berlin

Die Studie erscheint am 2.10.2018 in Nature communications.

Media Contact

Dr. Antonia Rötger Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Informationen:

http://www.helmholtz-berlin.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer