Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Neuronenwolken lichten sich

09.09.2013
WissenschafterInnen am Campus Vienna Biocenter um Alipasha Vaziri und Manuel Zimmer liefern technologische Neuerungen und wichtige Erkenntnisse auf dem Gebiet der Neurowissenschaften, die der Erforschung neuronaler Schaltkreise dienen.

Dabei gingen physikalisches und molekularbiologisches Know-how Hand in Hand. Die Ergebnisse wurden in der aktuellen Ausgabe des Fachjournals „Nature Methods“ publiziert.


Kopfbereich des Fadenwurms unter dem Mikroskop, die Neuronen des "Gehirns" sind grün eingefärbt. Darüber sind die Lichtscheiben des WF-TeFo Mikroskops angedeutet, wie sie den Bereich des Gehirns abscannen und dabei die Aktivität verschiedener Neuronen abbilden (künstlerische Darstellung). IMP

Das Nervensystem des Fadenwurms C. elegans besteht aus lediglich 302 Nervenzellen (Neuronen). Das besondere am Fadenwurm ist, dass seit über 25 Jahren bekannt ist, wie alle seine Neuronen genau miteinander verknüpft sind. Ein solch kompletter neuroanatomischer Atlas ist bisher für keinen anderen Organismus erhältlich.

Zudem weiß man von einzelnen Neuronen, welche Reaktion – etwa bestimmte Bewegungsabläufe – sie im Wurm hervorrufen. Dennoch liegt für die Neurowissenschaften auch beim einfachsten Modellorganismus das Wichtigste noch im Dunkeln: Es fehlt ein funktionaler Atlas, der zeigt, wie ganze Neuronengruppen (neuronale Netzwerke) dynamisch miteinander interagieren. Nur mit diesem Wissen kann man ein Nervensystem als Ganzes verstehen. Dann könnte man auch noch bessere Rückschlüsse auf andere Organismen, wie etwa den Menschen, ziehen.

Diese Lücke haben nun ForscherInnen am Forschungsinstitut für Molekulare Pathologie (IMP), an den Max F. Perutz Laboratories (MFPL) sowie an der Forschungsplattform „Quantum Phenomena & Nanoscale Biological Systems“ (QuNaBioS) der Universität Wien mit einer neu entwickelten Methode geschlossen. Die Methode ist sowohl aus mikroskop-technischer als auch molekularbiologischer Sicht für die Forschung neu.

Zentrales Anliegen war die Entwicklung einer neuen Mikroskopietechnik, welche die Aktivität sehr vieler Neuronen rasch und gleichzeitig erfassen kann. „Normalerweise scannt das Objektiv eines Lichtmikroskops in allen drei Dimensionen. Das dauert viel zu lange, um die Aktivität aller Neuronen gleichzeitig aufnehmen zu können. Wir haben nun einen physikalischen Trick gefunden, die Form des zur Mikroskopie eingesetzten Lichtes gezielt zu gestalten, was wir ‚Light Sculpting‘ nennen.

Dadurch brauchen wir nur noch in einer Dimension zu scannen“, erklärt der Physiker Robert Prevedel, Senior Postdoc im Labor von Alipasha Vaziri, IMP-MFPL Gruppenleiter und Leiter der QuNaBioS Forschungsplattform an der Universität Wien. Die neue Mikroskopiemethode wurde von Physikern dieser Forschungsplattform entwickelt. „Mit den so produzierten dreidimensionalen Videos beobachten wir, wie sich die gleichzeitige Aktivität vieler Neuronen über einen bestimmten Zeitraum verändert“, sagt Prevedel.

Komplette neuronale Netzwerke im Blickfeld

Die neue Mikroskopietechnik war aber nur der halbe Weg zum Erfolg. Die Aktivität von Neuronen wird mit Hilfe von Kalziumsensoren gemessen. Ein bestimmtes zur Markierung verwendetes fluoreszierendes Protein leuchtet auf, wenn es Kalzium bindet. Sobald die Neuronen aktiviert werden, steigen die Kalziumkonzentration und damit auch die Intensität der Fluoreszenz an, die gemessen werden kann. Jedoch lagen die vielen Neuronen auf den Scanbildern so dicht aneinander, dass sie nicht voneinander zu unterscheiden waren.

„Indem wir daraufhin den Kalziumsensor nur in den Zellkern anstatt in das gesamte Zellinnere gebracht haben, umgingen wir dieses Problem. So wurden die Umrisse einzelner Neuronen sichtbar, was deren Identifikation erlaubte“, so Tina Schrödel, Neurobiologin und Doktorandin im Labor von Manuel Zimmer am IMP und Co-Erstautorin der Studie. „Mit dieser Methode erfassen wir gleichzeitig fast alle Neuronen im Gehirn des Wurms“, so Schrödel weiter.

Vom Aktivitäts- zum Verhaltensmuster

Die ForscherInnen machen auf diese Weise Neuronengruppen aus, die bestimmte Aktivitätsmuster zeigen. Daraus lässt sich schließen, wie Information im gesamten Gehirn des Wurms verarbeitet wird. „Das große Ziel der Neurowissenschaften ist es, aus den Aktivitätsmustern von Neuronen abzuleiten, wie Organismen Sinnesreize verarbeiten, Entscheidungen treffen und dann reagieren. Diese neue Methode, die nur durch enge Zusammenarbeit von Physikern und Neurobiologen entwickelt werden konnte, bringt die ForscherInnen diesem Ziel entscheidend näher. „Wir beginnen gerade, wichtige neue Erkenntnisse zu gewinnen, zu denen man vorher keinen experimentellen Zugang hatte. In den nächsten Schritten werden wir erforschen, wie unterschiedliche Reize im Gehirn verarbeitet werden“ erklärt Schrödel. „Wir werden auch weiterhin stets neue Methoden dazu entwickeln. Wir wollen zum Beispiel wissen, wie bestimme Bewegungsabläufe im Gehirn geplant und ausgeführt werden. Dazu müssen wir sowohl die Mikroskopietechnik als auch die Datenanalyse verbessern, sodass wir dies auch bei frei beweglichen Würmern aufzeichnen können – das wird unser Ziel für die kommenden ein bis zwei Jahre sein“, erklärt Prevedel abschließend.

Publikation in Nature Methods:
Tina Schrödel, Robert Prevedel, Karin Aumayr, Manuel Zimmer und Alipasha Vaziri: Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nature Methods (September 2013). DOI: http://dx.doi.org/10.1038/nmeth.2637

Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.

Die Max F. Perutz Laboratories (MFPL) sind ein gemeinsames Forschungs- und Ausbildungszentrum der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL sind rund 530 WissenschafterInnen in über 60 Forschungsgruppen mit Grundlagenforschung im Bereich der Molekularbiologie beschäftigt.

Wissenschaftlicher Kontakt:
Ass. Prof. Dr. Alipasha Vaziri
Forschungsinstitut für Molekulare Pathologie (IMP)
Max F. Perutz Laboratories (MFPL) and Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Universität Wien
T +43-1-79730-3540
alipasha.vaziri@univie.ac.at
Dr. Manuel Zimmer
Forschungsinstitut für Molekulare Pathologie (IMP)
T +43-1-79730-3430
manuel.zimmer@imp.ac.at
Rückfrage:
Dr. Heidemarie Hurtl
IMP Communications
T +43-1-79730-3625
M +43 664 8247910
hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at
http://www.imp.ac.at/research/research-groups/vaziri-group/
http://www.imp.ac.at/research/research-groups/zimmer-group/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics