Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Werkzeug erlaubt komplexe Quantensimulationen

05.09.2017

Bald schon wollen Physiker mit Hilfe von Quantensimulatoren Probleme lösen, an denen herkömmliche Computer scheitern. Dafür benötigen sie aber neue Werkzeuge, um sicherzustellen, dass die Simulatoren richtig arbeiten. Innsbrucker Forscher um Rainer Blatt und Christian Roos haben nun gemeinsam mit Forschern der Universitäten Ulm und Strathclyde ein neues Verfahren im Labor umgesetzt, mit dem auch komplexe Quantenzustände effizient charakterisiert werden können. Die Matrix-Produkt-Zustands-Tomographie könnte zu einem neuen Standardwerkzeug für Quantensimulatoren werden.

Viele Phänomene der Quantenwelt lassen sich im Labor nicht direkt untersuchen, und auch Supercomputer scheitern beim Versuch, sie zu simulieren. Wissenschaftler sind heute aber in der Lage, verschiedene Quantensysteme im Labor sehr präzise zu kontrollieren. Diese können genutzt werden, um andere Quantensysteme nachzuahmen - zu simulieren. Quantensimulatoren gelten deshalb als eine der ersten konkreten Anwendungen der zweiten Quantenrevolution.


Die Abbildung visualisiert eine Kette gespeicherter Ionen, die miteinander in Wechselwirkung treten.

IQOQI Innsbruck/Harald Ritsch

Als schwierig erweist sich allerdings noch die vollständige Charakterisierung von großen und komplexen Quantenzuständen, die für reale Simulationen notwendig ist. Der aktuelle Goldstandard für Quantenzustandsanalysen im Labor - die Quantenzustands-Tomographie - eignet sich nur für kleine Quantensysteme, denn mit zunehmender Größe steigt deren Aufwand exponentiell an.

Nun haben Forscherinnen und Forscher um Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften erstmals ein neues Verfahren im Labor etabliert, mit dem sich auch komplexe Quantenzustände effizient charakterisieren lassen.

Mit vereinten Kräften

In Ionenfallen werden Teilchen auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt und mit Hilfe von Lasern manipuliert. Die Innsbrucker Quantenphysiker sind in diesem Bereich weltweit führend und können heute in Ionenfallen 20 und mehr Teilchen miteinander verschränken. Um solche Quantensysteme vollständig charakterisieren zu können, benötigen sie neue Methoden. Hier kamen ihnen Theoretiker um Martin Plenio von der Universität Ulm, Deutschland, zu Hilfe.

Sie haben 2010 ein neues Verfahren für die Charakterisierung von komplexen Quantenzuständen vorgeschlagen. Mit der sogenannten Matrix-Produkt-Zustands-Tomographie lässt sich der Zustand einer großen Gruppe von Quantensystemen präzise abschätzen, ohne dass der Aufwand mit zunehmender Größe dramatisch ansteigt. Gemeinsam mit den Teams um Martin Plenio und Andrew Daley von der University of Strathclyde in Schottland haben die Innsbrucker Experimentalphysiker um Christian Roos, Ben Lanyon und Christine Maier dieses Verfahren nun im Labor umgesetzt.

Effizienter messen

Als Testfall bauten die Physiker einen Quantensimulator mit bis zu 14 Quantenbits, der zunächst in einem einfachen Ausgangszustand ohne Quantenkorrelationen präpariert wurde. In der Folge verschränkten die Forscher mit Laserlicht jeweils benachbarte Teilchen und beobachteten die dynamische Ausbreitung der Verschränkung im System. „Mit der Methode können wir den Quantenzustand des Gesamtsystems bestimmen, indem wir nur einen kleinen Bruchteil der Systemeigenschaften messen“, sagt START-Preisträger Ben Lanyon.

Die Charakterisierung des globalen Quantenzustands aus den Messdaten übernahmen die Theoretiker um Martin Plenio: „Das Verfahren basiert darauf, dass wir lokal verteilte Verschränkung theoretisch sehr gut beschreiben und nun im Labor auch messen können.“

Als die Arbeitsgruppe von Rainer Blatt 2005 das erste Quantenbyte realisierte, waren für die Charakterisierung des Quantenzustands über 6.000 Messungen in einen Zeitraum von zehn Stunden nötig. Mit der neuen Methode werden dafür nur noch 27 Messungen in rund 10 Minuten gebraucht.

„Wir konnten zeigen, dass mit diesem Verfahren auch große und komplexe Quantenzustände effizient bestimmt werden können“, freut sich Christine Maier aus dem Innsbrucker Team. Nun wollen die Wissenschaftler die Algorithmen so weiterentwickeln, dass sie auch von anderen Forschungsgruppen flexibel eingesetzt werden kann.

Neuer Goldstandard

Das neue Verfahren erlaubt die Charakterisierung von großen Quantenvielteilchensystemen im Labor und schafft damit auch eine Vergleichsmöglichkeit für Quantensimulationen. „Wir können mit den Messungen Quantensimulatoren kalibrieren, indem wir sie mit analytischen Berechnungen vergleichen“, erklärt Christian Roos. „Dann wissen wir, ob der Simulator das macht, was wir wollen.“ Die neue Methode bietet den Physikern ein Werkzeug für viele Anwendungen und könnte ein neuer Standard für Quantensimulationen werden.

Finanziell unterstützt wurde die Arbeit unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Union.

Detaillierte Bildunterschrift: Die Abbildung visualisiert eine Kette gespeicherter Ionen, die miteinander in Wechselwirkung treten. Daraus resultiert ein komplexer Quantenzustand (Psi), der durch Messungen an benachbarten Gruppen von Ionen rekonstruiert werden kann.

Publikation: Efficient tomography of a quantum many-body system. B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A. S. Buyskikh, A. J. Daley, M. Cramer, M. B. Plenio, R. Blatt, C. F. Roos. Nature Physics 2017 DOI: 10.1038/nphys4244 (https://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4244.html)

Rückfragehinweis:

Dr. Christian Roos
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 4728
E-Mail: christian.roos@uibk.ac.at
Web: http://www.quantumoptics.at/

Ben Lanyon, PhD
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 4724
E-Mail: ben.lanyon@uibk.ac.at

Christine Maier
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 4726
E-Mail: christine.maier@uibk.ac.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

https://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4244.html

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics