Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues, simulierbares Modell für exotische Quantenphänomene

28.11.2013
Wissenschaftler am MPQ entwickeln ein neues Modell für das Auftreten des Fraktionellen Quanten-Hall-Effekts in Gittersystemen.

Es ist faszinierend, wie das quantenmechanische Verhalten von Teilchen im Mikrokosmos zu seltsamen Eigenschaften führen kann, die sich sogar in der klassischen Welt bemerkbar machen.


Abbildung 1

Ein Beispiel dafür ist der Fraktionelle Quanten-Hall-Effekt (FQH), der vor rund 30 Jahren an Halbleiter-Bauelementen entdeckt wurde. Er zählt zu den faszinierendsten Phänomenen in der Festkörperphysik und ist hier bereits eingehend untersucht worden. Heutzutage sind Experimentalphysiker in der Lage, Effekte, die in der Festkörperphysik auftreten, mit ultrakalten Atomen in optischen Gittern zu modellieren.

Diese Möglichkeiten wecken das Interesse an der Frage, unter welchen Bedingungen der FQH in diesen Systemen beobachtet werden könnte. Die theoretische Physikerin Dr. Anne Nielsen hat jetzt zusammen mit anderen Wissenschaftlern aus der Abteilung Theorie von Prof. Ignacio Cirac am Max-Planck-Institut für Quantenoptik und der Universidad Autónoma de Madrid ein neues Gittermodell entwickelt, das ein FQH-ähnliches Verhalten zeigen würde (Nature Communications, 28. November 2013).

Der klassische Hall-Effekt beschreibt das Verhalten von Elektronen, allgemeiner gesagt von Ladungsträgern, in einem elektrischen Leiter unter dem Einfluss eines Magnetfeldes, das senkrecht zum elektrischen Strom gerichtet ist. Aufgrund der Lorentz-Kraft baut sich eine sogenannte Hall-Spannung auf, die linear mit der Stärke des Magnetfeldes steigt.

1980 untersuchte der deutsche Physiker Klaus von Klitzing die elektronische Struktur von flachen Halbleiter-Transistoren (auch als MOSFETs bezeichnet) bei extrem tiefen Temperaturen und extrem hohen Magnetfeldern. Dabei machte er die verblüffende Beobachtung, dass der Hall-Widerstand mit steigendem Magnetfeld nicht linear, sondern stufenweise anstieg, wobei der Wert jeder Stufe umgekehrt proportional zum Vielfachen einer Kombination aus bestimmten Naturkonstanten war.

Einige Jahre später deckten Messungen an Bauteilen aus Galliumarsenid unter ähnlichen Bedingungen zusätzliche Plateaus auf, die Bruchteilen dieses Vielfachen entsprachen. Beide Phänomene sind von fundamentaler Bedeutung, geben sie doch völlig neue Einblicke in die quantenmechanischen Prozesse, die in flachen Halbleiterstrukturen ablaufen, und sie brachten ihren Entdeckern den Nobelpreis: 1985 wurde Klaus von Klitzing mit dem Nobelpreis für Physik ausgezeichnet, 1998 erhielten die Physiker Robert Laughlin, Horst Störner and Daniel Tsui diese höchste Auszeichnung in der Wissenschaft.

Der FQH ist ein äußerst spannendes Phänomen. Er wird von Theoretikern damit erklärt, dass einzelne oder mehrere Elektronen mit den magnetischen Flussquanten des Feldes zusammengesetzte Zustände bilden. Genauere experimentelle Untersuchungen dieses Zustandes gestalten sich jedoch schwierig, zumal er sehr empfindlich auf Störungen reagiert.

Mit optischen Gittern, in denen Atome die Rolle von Elektronen spielen, ließe sich das Phänomen sehr viel sauberer darstellen. Dies, und die Hoffnung auf einfachere und robustere FQH-Systeme ist der Grund dafür, dass Theoretiker weltweit zu verstehen versuchen, welche Mechanismen zu der Entstehung des FQH in Gittersystemen führen.

Das MPQ-Team konzentriert sich dabei auf die toplogischen Eigenschaften der FQH-Zustände. Die Topologie eines Objektes repräsentiert bestimmte geometrische Eigenschaften. So sind z.B. eine Teetasse mit einem geschlossenen Henkel und ein Bagel toplogisch äquivalent, da sie ineinander überführt werden können ohne Einschnitte oder das Stanzen von Löchern. Ein Fußball und ein Bagel sind dagegen nicht toplogisch äquivalent.

In ausgedehnten Festkörpersystemen spüren die Elektronen die elektrischen Kräfte vieler periodisch angeordneter Ionen. Gewöhnlich bilden ihre erlaubten Energiezustände gerade und kontinuierliche „Bänder“, deren Topologie trivial ist. In Systemen jedoch, die den FQH aufweisen, verleiht die Topologie dem Material exotische Eigenschaften, z.B. dass der elektrische Strom nur an den Kanten durchgelassen wird und sehr widerstandsfähig gegenüber Störungen ist.

„Wir haben eine neues Gittermodell entwickelt, an dem der FQH-Zustand beobachtet werden sollte“, sagt Anne Nielsen, die Erstautorin der Veröffentlichung. „Dabei gehen wir von einem zweidimensionalen Gitter aus, an dem jeder Platz mit einem Teilchen besetzt ist. Jedes Teilchen ist durch seinen sogenannten Spin charakterisiert, der entweder nach oben oder nach unten zeigt. Außerdem besteht zwischen den Teilchen eine lokale Wechselwirkung mit kurzer Reichweite.“ (Siehe Abbildung 1.)

Numerische Untersuchungen ergaben, dass die Eigenschaften und die Topologie des Systems dem Verhalten entsprechen, das man für einen FQH-Zustand erwartet. So bilden sich Korrelationen über große Entfernungen aus, die zu der Entstehung von zwei verschiedenen Grundzuständen des Systems führen, wenn man periodische Randbedingungen berücksichtigt.

Die hier verwendeten mathematischen Werkzeuge haben ein breites Anwendungsgebiet und öffnen damit die Perspektive für die Entwicklung weiterer interessanter Modelle. „Der Mechanismus, der hier zur Ausbildung des FQH führt, unterscheidet sich offenbar von den Mechanismen früherer Modelle“, erklärt Anne Nielsen. „Außerdem haben wir gezeigt, wie sich das Modell mit ultrakalten Atomen in optischen Gittern im Experiment realisieren ließe. Dadurch ergäben sich einzigartige Möglichkeiten, diese fragilen Zustände unter kontrollierten Bedingungen experimentell zu untersuchen, was einen Meilenstein für Quantensimulationen bedeuten würde.“ Olivia Meyer-Streng

Abbildung 1: Illustration des Gittermodells, in dem sich jedes Teilchen entweder in dem Zustand “Spin aufwärts” oder “Spin abwärts” befindet. (Grafik: Anne Nielsen, MPQ)

Originalveröffentlichung:

Anne E. B. Nielsen, Germán Sierra, and J. Ignacio Cirac
Local models of fractional quantum Hall states in lattices and physical implementation

Nature Communications 10.1038/ncomms3864, 28 November 2013

Kontakt:

Prof. Dr. J. Ignacio Cirac
Honorarprofessor, TU München
Direktor am Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -705/736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de
Dr. Anne Nielsen
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: + 49 (0)89 / 32 905 -130
Telefax: + 49 (0)89 / 32 905 -336
E-Mail: anne.nielsen@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Mit Diamant und Laser kleinste Magnetfelder im Gehirn messen // Quantensensorik am Fraunhofer IAF
25.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Mögliche Heimatsterne für das interstellare Objekt 'Oumuamua'
25.09.2018 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kupfer-Aluminium-Superatom

Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms. Das hetero-metallische Superatom, das Chemikerinnen und Chemiker der Technischen Universität München (TUM) hergestellt haben, schafft die Voraussetzung für die Entwicklung neuer, kostengünstiger Katalysatoren.

Chemie kann teuer sein. Zum Reinigen von Abgasen beispielsweise benutzt man Platin. Das Edelmetall dient als Katalysator, der chemische Reaktionen...

Im Focus: Hygiene im Handumdrehen – mit neuem Netzwerk „CleanHand“

Das Fraunhofer FEP beschäftigt sich seit Jahrzehnten mit der Entwicklung von Prozessen und Anlagen zur Reinigung, Sterilisation und Oberflächenmodifizierung. Zur Bündelung der Kompetenzen vieler Partner wurde im Mai 2018 das Netzwerk „CleanHand“ zur Entwicklung von Systemen und Technologien für saubere Oberflächen, Materialien und Gegenstände ins Leben gerufen. Als Partner von „CleanHand“ präsentiert das Fraunhofer FEP im Rahmen der Messe parts2clean, vom 23.-25. Oktober 2018, in Stuttgart, am Stand der Fraunhofer-Allianz Reinigungstechnik (Halle 5, Stand C31), das Netzwerk sowie aktuelle Forschungsschwerpunkte des Institutes im Bereich Hygiene und Reinigung.

Besonders um die Hauptreisezeiten gehen vermehrt Testberichte und Studien über die Reinheit von europäischen Raststätten, Hotelbetten und Freibädern durch die...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fachkonferenz "Automatisiertes und autonomes Fahren"

25.09.2018 | Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bisher unbekannter Mechanismus der Blut-Hirn-Schranke entdeckt

25.09.2018 | Biowissenschaften Chemie

Suche nach Grundwasser im Ozean - Neues deutsch-maltesisches Forschungsprojekt gestartet

25.09.2018 | Geowissenschaften

Auf dem Weg zur Prothese der Zukunft

25.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics