Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Kapitel bei der Suche nach Dunkler Materie

11.11.2015

Im Universum muss es fünfmal mehr Dunkle Materie als die uns bekannte sichtbare Materie geben. Es ist aber immer noch unbekannt, woraus diese Dunkle Materie besteht. Heute hat ein internationales Wissenschaftlerteam im Gran-Sasso-Untergrundlabor in Italien das XENON1T-Instrument eingeweiht, das bei der Suche nach Dunkler Materie ein neues Kapitel aufschlägt.

Dunkle Materie ist ein wesentlicher Bestandteil des Universums, und seit Jahrzehnten wird mit Laborexperimenten danach gesucht. Allerdings konnte bis heute Dunkle Materie nur indirekt beobachtet werden, nämlich über ihre Schwerkraft, die alle Bewegungen von Sternen und Galaxien dominiert. Die Indizien deuten darauf hin, dass Dunkle Materie aus einer unbekannten Art von stabilen Elementarteilchen, sogenannten WIMPs besteht, die sich bisher der Beobachtung entzogen haben.


XENON1T im LNGS: rechts das Gebäude, das die Xenon-Aufbereitung sowie die Experimentsteuerung und Datenerfassung beherbergt, links der große Wassertank, in dessen Mitte der Detektor installiert ist.

XENON Collaboration


Montage des XENON1T-Detektors im Reinraum.

XENON Collaboration

WIMPs wären Geisterteilchen ähnlich wie Neutrinos, die ursprünglich auch auf Grund von Indizien postuliert wurden. „Wir gehen davon aus, dass etwa Hunderttausend Dunkle-Materie-Teilchen pro Sekunde die Fläche eines Daumennagels durchströmen“, sagt Prof. Manfred Lindner, Direktor am Max-Planck-Institut für Kernphysik in Heidelberg.

„Die Wahrscheinlichkeit, dass sie mit den Atomen in unserem Detektor wechselwirken, muss aber äußerst gering sein – sonst hätten wir sie schon gefunden. Der Bereich, in dem WIMPs sichtbar werden sollten, wurde bisher aber auch noch nicht umfassend abgesucht. Deshalb brauchen wir XENON1T, ein viel empfindlicheres Instrument, welches tief in den Bereich vordringt, in dem die seltenen Signale erwartet werden.“

Der Detektor wurde von der internationalen XENON-Kollaboration gebaut, der 21 Forschungsgruppen aus den USA, Deutschland, Italien, der Schweiz, Portugal, Frankreich, den Niederlanden, Schweden, Israel und Abu Dhabi angehören, und die heute die Einweihung ihres neuen XENON1T-Instruments gefeiert hat.

Die Feier mit Vertretern der geldgebenden Institutionen und Journalisten fand in den Laboratori Nazionali del Gran Sasso (LNGS) in Italien, einem der größten Untergrundlabors der Welt, statt. Etwa 80 Gäste versammelten sich zur Zeremonie in der 110 m langen, 15 m breiten und 15 m hohen Halle B des LNGS direkt beim XENON1T-Instrument. „Unser Detektor befindet sich unter 1400 m Gestein, um ihn vor der kosmischen Strahlung zu schützen“, erklärt Prof. Uwe Oberlack von der Johannes-Gutenberg-Universität in Mainz den Standort des Instruments.

„Selbst in solcher Tiefe benötigen wir noch einen das Experiment umgebenden Schutz aus 750 Kubikmeter hochreinem Wasser, der verbleibende kosmische Strahlung durch winzige Lichtblitze anzeigt und umgebende Radioaktivität abschirmt.“ Bei der vorausgehenden Einführungsveranstaltung im Hörsaal des LNGS mit weiteren Gästen wurden in Vorträgen die physikalische Motivation und Strategie des Projekts und der Aufbau des Detektors vorgestellt.

Kampf gegen kleinste Mengen an Umweltradioaktivität

Als Detektor für Dunkle Materie verwendet XENON1T 3,5 Tonnen des Edelgases Xenon als ultrareine Flüssigkeit bei –95 °C. „Um die seltenen Wechselwirkungen von Dunkle-Materie-Teilchen im Detektor zu finden, brauchen wir eine große Menge Detektormaterial und eine extrem hohe radioaktive Reinheit“, erläutert Prof. Christian Weinheimer von der Westfälischen Wilhelms-Universität Münster, „sonst hätten wir keine Chance, die echten Signale unter den Störsignalen zu finden.“

Deshalb haben die XENON-Wissenschaftler alle Materialien zum Bau des Instruments sorgfältig auf ihren Gehalt an radioaktiven Verunreinigungen untersucht und die reinsten ausgewählt. Er fügt hinzu: „Objekte völlig ohne Radioaktivität existieren nicht; winzige Spuren von Radioaktivität sind überall vorhanden, in Metallen, in den Wänden des Labors und selbst in unserem Körper. Wir setzen alles daran, diese radioaktiven Verunreinigungen so weit wie möglich zu reduzieren.“

Die XENON-Forscher messen extrem schwache Licht- und Ladungssignale, aus denen sie den Ort der Wechselwirkung im Detektor rekonstruieren, außerdem die freigesetzte Energie. Nur Signale aus der innersten 1 Tonne des flüssigen Xenons werden als möglicherweise von Dunkle-Materie-Teilchen verursacht angesehen. Das Licht wird von 248 Lichtsensoren registriert, die so empfindlich sind, dass sie einzelne Photonen nachweisen können.

Sie befinden sich zusammen mit dem tiefkalten flüssigen Xenon in einer Art riesiger Thermoskanne, dem Kryostaten. Reinigung und Verflüssigung des Xenon-Gases erfolgen in dem dreistöckigen XENON-Gebäude neben dem großen Wassertank. Im Erdgeschoss steht eine riesige Stahlkugel mit Rohrleitungen und Ventilen. „Dieses ReStoX genannte System kann 7,6 Tonnen Xenon sowohl gasförmig als auch flüssig aufnehmen“, sagt Uwe Oberlack.

„Das ist mehr als die für XENON1T benötigte Menge, aber wir wollen darauf vorbereitet sein, in Zukunft erforderlichenfalls rasch die Empfindlichkeit des Detektors durch eine Erweiterung mit einer größeren Menge Xenon steigern zu können.“

Hoffen auf ein Dunkle-Materie-Signal

„Die Einweihung findet genau zur Fertigstellung des neuen Instruments statt“, freut sich Christian Weinheimer, „und wir sind schon dabei, die Funktion der Komponenten zu testen. In Betrieb ist XENON1T dann das weltweit empfindlichste Experiment zur Suche nach der Dunklen Materie.“ Erste Ergebnisse werden schon im Frühjahr 2016 erwartet, weil XENON1T bereits nach einer Woche Messzeit alle bisherigen Experimente übertreffen wird. Nach 2 Jahren Messzeit wird die Leistungsfähigkeit des Instruments ausgeschöpft sein, wie eine eben veröffentliche Studie ergeben hat. „Natürlich wollen wir Dunkle Materie finden“, sagt Manfred Lindner, „aber selbst wenn wir nach 2 Jahren nur einige Hinweise gefunden haben, sind wir in einer ausgezeichneten Position, weil wir das Instrument schnell auf XENONnT ausbauen können, um auch die letzten Reste des WIMP-Bereichs abzudecken.“ Dafür reicht die bestehende Infrastruktur großenteils aus.


An der internationalen XENON-Kollaboration sind aus Deutschland das Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg, die Johannes-Gutenberg-Universität Mainz und die Westfälische Wilhelms-Universität Münster beteiligt. Auswahl und Kontrolle von Detektormaterialien mit extrem niedriger Radioaktivität, Entwicklung und Test der Lichtsensoren sowie das Xenon-Target liegen im Verantwortungsbereich des MPIK. Die Gruppe an der Universität Mainz ist für den Myon-Detektor zuständig. Sie ist ferner am innovativen Xenon-Lagersystem ReStoX sowie am inneren Detektor beteiligt. Die Forscher der Universität Münster zeichnen für die Reinigung des Xenons verantwortlich und haben dafür den Reinigungskreislauf und eine einzigartige Tieftemperatur-Destillationsanlage entwickelt. Alle drei Institute werden sich bei der Datennahme und -analyse sowie der Kalibration engagieren.


Kontakt:

Max-Planck-Institut für Kernphysik:
Prof. Dr. Manfred Lindner
Tel.: 06221 516 800
Fax.: 06221 516 802
E-Mail: lindner (at) mpi-hd.mpg.de

Johannes-Gutenberg-Universität Mainz:
Prof. Dr. Uwe Oberlack
Tel.: 06131 3925167
Fax.: 06131 3925169
E-Mail: oberlack (at) uni-mainz.de

Westfälische Wilhelms-Universität Münster:
Prof. Dr. Christian Weinheimer
Tel.: 0251 8334971
Fax.: 0251 8334962
E-Mail: weinheim (at) uni-muenster.de

Weitere Informationen:

http://xenon1t.org/ - Webseiten von XENON1T

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Berichte zu: Kernphysik MPIK Materie Max-Planck-Institut Radioaktivität Xenon

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren
17.10.2018 | Forschungsverbund Berlin e.V.

nachricht Reise zum Merkur mit Berner Beteiligung
17.10.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics